首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unusual "glycolate" extender unit at C-9/C-10 of ansamitocin is not derived from 2-hydroxymalonyl-CoA or 2-methoxymalonyl-CoA, as demonstrated by feeding experiments with the corresponding 1-13C-labeled N-acetylcysteamine thioesters but is formed from an acyl carrier protein (ACP)-bound substrate, possibly 2-methoxymalonyl-ACP, elaborated by enzymes encoded by a subcluster of five genes, asm12-17, from the ansamitocin bisosynthetic gene cluster.  相似文献   

2.
The biosynthetic gene cluster for the enediyne antitumor antibiotic maduropeptin (MDP) from Actinomadura madurae ATCC 39144 was cloned and sequenced. Cloning of the mdp gene cluster was confirmed by heterologous complementation of enediyne polyketide synthase (PKS) mutants from the C-1027 producer Streptomyces globisporus and the neocarzinostatin producer Streptomyces carzinostaticus using the MDP enediyne PKS and associated genes. Furthermore, MDP was produced, and its apoprotein was isolated and N-terminal sequenced; the encoding gene, mdpA, was found to reside within the cluster. The biosynthesis of MDP is highlighted by two iterative type I PKSs--the enediyne PKS and a 6-methylsalicylic acid PKS; generation of (S)-3-(2-chloro-3-hydroxy-4-methoxyphenyl)-3-hydroxypropionic acid derived from L-alpha-tyrosine; a unique type of enediyne apoprotein; and a convergent biosynthetic approach to the final MDP chromophore. The results demonstrate a platform for engineering new enediynes by combinatorial biosynthesis and establish a unified paradigm for the biosynthesis of enediyne polyketides.  相似文献   

3.
A gene cluster encoding all of the enzymes for the biosynthesis of the antibiotic pentalenolactone (1) has recently been identified in Streptomyces avermitilis. The biosynthetic gene cluster contains the ptlI (SAV2999) gene which encodes a cytochrome P450 (CYP183A1). PtlI was cloned by PCR and expressed in Escherichia coli as a C-terminal His6-tag protein. Recombinant PtlI bound pentalenene (3) with high affinity (KD = 1.44 +/- 0.14 muM). Incubation of recombinant PtlI with (+/-)-3 in the presence of NADPH, E. coli flavodoxin and flavodoxin reductase, and O2 resulted in conversion to a single enantiomer of pentalen-13-al (7), by stepwise allylic oxidation via pentalen-13-ol (6). The steady-state kinetic parameters for the oxidation of pentalenene (3) to pentalen-13-ol (6) were kcat = 0.503 +/- 0.006 min-1 and Km = 3.33+/-0.62 muM for 3.  相似文献   

4.
Yin M  Lu T  Zhao LX  Chen Y  Huang SX  Lohman JR  Xu LH  Jiang CL  Shen B 《Organic letters》2011,13(14):3726-3729
The biosynthetic gene clusters for the Hsp90 inhibitor geldanamycin (GDM, 1) have been cloned previously from three different Streptomyces strains, but the gene encoding the C-17 O-methyltransferase remains unknown. The cloning and sequencing of a new GDM biosynthetic gene cluster from Streptomyces autolyticus CGMCC 0516 was reported, identifying the gdmMT gene that encodes the missing C-17 O-methyltransferase for 1 biosynthesis.  相似文献   

5.
Saframycin A(SFM-A),a tetrahydroisoquinoline antibiotic isolated from Streptomyces lavendulae,shows potent anti-proliferation activities against a variety of tumor cell lines,and shares the core structure with ecteinascidin 743(ET-743),the anticancer drug for soft-tissue sarcoma.Characterization of the SFM-A biosynthetic gene cluster revealed three nonribosomal peptide synthetase genes and a series of genes encoding oxygenases.To investigate the function of sfmO2 gene,encoding a FAD-dependent monooxygenase/hydroxylase,we constructed the gene replacement mutant(△sfmO2) strain S.lavendulae TL2007 and the corresponding gene complementation mutant strain S.lavendulae TL2008.A novel compound,SFM-O,was isolated from the △sfmO2 replacement mutant strain and its structure was characterized by comparison to the HRMS and NMR spectra of SFM-A.These findings indicated that SfmO2 is responsible for the oxidation of ring A in the biosynthetic pathway of SFM-A,and the new compound SFM-O could be considered as an advanced intermediate in the semisynthesis of ET-743.  相似文献   

6.
Selective incorporation of extender units in modular polyketide synthases is primarily controlled by acyl transferase (AT) domains. The AT domains catalyze transacylation of the extender unit from acyl-CoA to the phosphopantetheine arm of an acyl carrier protein (ACP) domain in the same module. New methods that can modulate the extender unit specificity of individual modules with minimal structural or kinetic perturbations in the engineered module are desirable for the efficient biosynthesis of novel natural product analogues. We have demonstrated that transacylation of malonyl groups onto an AT-null form of a mutant modular polyketide synthase by malonyl-CoA:ACP transacylase is an effective strategy for the engineered biosynthesis of site specifically modified polyketides. Using this strategy, 6-deoxyerythronolide B synthase was engineered to exclusively produce 2-desmethyl-6-deoxyerythronolide B. The productivity of the modified system was comparable to that of the wild-type synthase in vitro and in vivo.  相似文献   

7.
The biosynthetic gene cluster for chlorothricin (CHL) was localized to a 122 kb contiguous DNA from Streptomyces antibioticus DSM 40725, and its involvement in CHL biosynthesis was confirmed by gene inactivation and complementation. Bioinformatic analysis of the sequenced 111.989 kb DNA region revealed 42 open reading frames, 35 of which were defined to constitute the CHL gene cluster. An assembly model for CHL biosynthesis from D-olivose, 2-methoxy-5-chloro-6-methylsalicyclic acid, and chlorothricolide building blocks was proposed. This work represents cloning of a gene cluster for spirotetronate antibiotic biosynthesis and sets the stage to investigate the unusual macrolide biosynthesis including tandem Diels-Alder cyclizations, Baeyer-Villiger oxidation, and incorporation of an enoylpyruvate unit.  相似文献   

8.
Xiamycin A (XMA) and oxiamycin (OXM) are bacterial indolosesquiterpenes featuring rare pentacyclic ring systems and are isolated from a marine-derived Streptomyces sp. SCSIO 02999. The putative biosynthetic gene cluster for XMA/OXM was identified by a partial genome sequencing approach. Eighteen genes were proposed to be involved in XMA/OXM biosynthesis, including five genes for terpene synthesis via a non-mevalonate pathway, eight genes encoding oxidoreductases, and five genes for regulation and resistance. Targeted disruptions of 13 genes within the xia gene cluster were carried out to probe their encoded functions in XMA/OXM biosynthesis. The disruption of xiaK, encoding an aromatic ring hydroxylase, led to a mutant producing indosespene and a minor amount of XMA. Feeding of indosespene to XMA/OXM nonproducing mutants revealed indosespene as a common precursor for XMA/OXM biosynthesis. Most notably, the flavin dependent oxygenase XiaI was biochemically characterized in vitro to convert indosespene to XMA, revealing an unusual oxidative cyclization strategy tailoring indolosesquiterpene biosynthesis.  相似文献   

9.
The functions of six genes in the ansamitocin biosynthetic gene cluster of Actinosynnema pretiosum have been investigated by gene inactivation and chemical analysis of the mutants. They encode a halogenase (asm12), a carbamoyltransferase (asm21), a 20-O-methyltransferase (asm7), a 3-O-acyltransferase (asm19), an epoxidase (asm11), and an N-methyltransferase (asm10), respectively, and are responsible for the six post-PKS modification steps in ansamitocin formation. Several of the enzymes have relaxed substrate specificities, resulting in multiple parallel pathways in a metabolic grid, albeit with a preferred sequence of reactions as listed above.  相似文献   

10.
A 135,638 bp DNA region that encompasses the leinamycin (LNM) biosynthetic gene cluster was sequenced from Streptomyces atroolivaceus S-140. The boundaries of the lnm cluster were defined by systematic inactivation of open reading frames within the sequenced region. The lnm cluster spans 61.3 kb of DNA and consists of 27 genes encoding nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), hybrid NRPS-PKS, resistance, regulatory, and tailoring enzymes, as well as proteins of unknown function. A model for LNM biosynthesis is proposed, central to which is the LNM hybrid NRPS-PKS megasynthetase consisting of discrete (LnmQ and LnmP) and modular (LnmI) NRPS, acyltransferase-less PKS (LnmG, LnmI, and LnmJ), and PKS modules with unusual domain organization. These studies unveil an unprecedented architectural complexity for the LNM hybrid NRPS-PKS megasynthetase and set the stage to investigate the molecular basis for LNM biosynthesis.  相似文献   

11.
A screening program for bioactive compounds from marine cyanobacteria led to the isolation of jamaicamides A-C. Jamaicamide A is a novel and highly functionalized lipopeptide containing an alkynyl bromide, vinyl chloride, beta-methoxy eneone system, and pyrrolinone ring. The jamaicamides show sodium channelblocking activity and fish toxicity. Precursor feeding to jamaicamide-producing cultures mapped out the series of acetate and amino acid residues and helped develop an effective cloning strategy for the biosynthetic gene cluster. The 58 kbp gene cluster is composed of 17 open reading frames that show an exact colinearity with their expected utilization. A novel cassette of genes appears to form a pendent carbon atom possessing the vinyl chloride functionality; at its core this contains an HMG-CoA synthase-like motif, giving insight into the mechanism by which this functional group is created.  相似文献   

12.
Kirromycin is a complex linear polyketide that acts as a protein biosynthesis inhibitor by binding to the bacterial elongation factor Tu. The kirromycin biosynthetic gene cluster was isolated from the producer, Streptomyces collinus Tü 365, and confirmed by targeted disruption of essential biosynthesis genes. Kirromycin is synthesized by a large hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) encoded by the genes kirAI-kirAVI. This complex involves some very unusual features, including the absence of internal acyltransferase (AT) domains in KirAI-KirAV, multiple split-ups of PKS modules on separate genes, and swapping in the domain organization. Interestingly, one PKS enzyme, KirAVI, contains internal AT domains. Based on in silico analysis, a route to pyridone formation involving PKS and NRPS steps was postulated. This hypothesis was experimentally proven by feeding studies with [U-13C3(15)N]beta-alanine and NMR and MS analyses of the isolated pure kirromycin.  相似文献   

13.
14.
The unusual nitro‐substituted polyketides aureothin, neoaureothin (spectinabilin), and luteoreticulin, which are produced by diverse Streptomyces species, point to a joint evolution. Through rational genetic recombination and domain exchanges we have successfully reprogrammed the modular (type I) aur polyketide synthase (PKS) into a synthase that generates luteoreticulin. This is the first rational transformation of a modular PKS to produce a complex polyketide that was initially isolated from a different bacterium. A unique aspect of this synthetic biology approach is that we exclusively used genes from a single biosynthesis gene cluster to design the artificial pathway, an avenue that likely emulates natural evolutionary processes. Furthermore, an unexpected, context‐dependent switch in the regiospecificity of a pyrone methyl transferase was observed. We also describe an unprecedented scenario where an AT domain iteratively loads an extender unit onto the cognate ACP and the downstream ACP. This aberrant function is a novel case of non‐colinear behavior of PKS domains.  相似文献   

15.
BACKGROUND: Recently developed tools for the genetic manipulation of modular polyketide synthases (PKSs) have advanced the development of combinatorial biosynthesis technologies for drug discovery. Although many of the current techniques involve engineering individual domains or modules of the PKS, few experiments have addressed the ability to combine entire protein subunits from different modular PKSs to create hybrid polyketide pathways. We investigated this possibility by in vivo assembly of heterologous PKS complexes using natural and altered subunits from related macrolide PKSs. RESULTS: The pikAI and pikAII genes encoding subunits 1 and 2 (modules 1-4) of the picromycin PKS (PikPKS) and the eryAIII gene encoding subunit 3 (modules 5-6) of the 6-deoxyerythronolide B synthase (DEBS) were cloned in two compatible Streptomyces expression vectors. A strain of Streptomyces lividans co-transformed with the two vectors produced the hybrid macrolactone 3-hydroxynarbonolide. Co-expression of the same pik genes with the gene for subunit 3 of the oleandomycin PKS (OlePKS) was also successful. A series of hybrid polyketide pathways was then constructed by combining PikPKS subunits 1 and 2 with modified DEBS3 subunits containing engineered domains in modules 5 or 6. We also report the effect of junction location in a set of DEBS-PikPKS fusions. CONCLUSIONS: We show that natural as well as engineered protein subunits from heterologous modular PKSs can be functionally assembled to create hybrid polyketide pathways. This work represents a new strategy that complements earlier domain engineering approaches for combinatorial biosynthesis in which complete modules or PKS protein subunits, in addition to individual enzymatic domains, are used as building blocks for PKS engineering.  相似文献   

16.
The red gene cluster of Streptomyces coelicolor directs production of undecylprodiginine. Here we report that this gene cluster also directs production of streptorubin B and show that 2-undecylpyrrole (UP) is an intermediate in the biosynthesis of undecylprodiginine and streptorubin B. The redPQRKL genes are involved in UP biosynthesis. RedL and RedK are proposed to generate UP from dodecanoic acid or a derivative. A redK(-) mutant produces a hydroxylated undecylprodiginine derivative, whereas redL(-) and redK(-) mutants require addition of chemically synthesized UP for production of undecylprodiginine and streptorubin B. Fatty acid biosynthetic enzymes can provide dodecanoic acid, but efficient and selective prodiginine biosynthesis requires RedPQR. Deletion of redP, redQ, or redR leads to an 80%-95% decrease in production of undecylprodiginine and an array of prodiginine analogs with varying alkyl chains. In a redR(-) mutant, the ratio of these can be altered in a logical manner by feeding various fatty acids.  相似文献   

17.
Gilvocarcin V, an antitumor agent produced by the bacterium Streptomyces griseoflavus G? 3592, is the most studied representative of the distinct family of benzo[d]naphtho[1,2-b]pyran-6-one aryl C-glycoside antibiotics, which show excellent antitumor activity and a remarkably low toxicity. Its biosynthesis contains many intriguing steps, including an oxidative rearrangement, the C-glycosylation, and the generation of a vinyl side chain. These steps all contribute to structural elements of the drug, which are essential for its biological activity, but only poorly understood. Herein we report the cloning and characterization of the gilvocarcin (gil) gene cluster from S. griseoflavus G? 3592, and its heterologous expression in a foreign host (S. lividans). This is the first reported gene cluster encoding the biosynthesis of a benzo[d]naphtho[1,2-b]pyran-6-one aryl C-glycoside antibiotic, which not only provides insights regarding the biosynthesis of gilvocarcin V but also lays the foundation for the detailed studies of its intriguing biosynthetic steps and possibly for the generation of gilvocarcin analogues with improved biological activities through combinatorial biosynthesis.  相似文献   

18.
BACKGROUND: The polyketide lactone, tylactone, is produced in Streptomyces fradiae by the TylG complex of five multifunctional proteins. As with other type I polyketide synthases, the enzyme catalysing the final elongation step (TylGV) possesses an integral thioesterase domain that is believed to be responsible for chain termination and ring closure to form tylactone, which is then glycosylated to yield tylosin. In common with other macrolide producers, S. fradiae also possesses an additional thioesterase gene (orf5) located within the cluster of antibiotic biosynthetic genes. The function of the Orf5 protein is addressed here. RESULTS: Disruption of orf5 reduced antibiotic accumulation in S. fradiae by at least 85%. Under such circumstances, the strain accumulated desmycosin (demycarosyl-tylosin) due to a downstream polar effect on the expression of orf6, which encodes a mycarose biosynthetic enzyme. High levels of desmycosin production were restored in the disrupted strain by complementation with intact orf5, or with the corresponding thioesterase gene, nbmB, from S. narbonensis, but not with DNA encoding the integral thioesterase domain of TylGV. CONCLUSIONS: Polyketide metabolism in S. fradiae is strongly dependent on the thioesterase activity encoded by orf5 (tylO). It is proposed that the TylG complex might operate with a significant error frequency and be prone to blockage with aberrant polyketides. A putative editing activity associated with TylO might be essential to unblock the polyketide synthase complex and thereby promote antibiotic accumulation.  相似文献   

19.
Background: Polycyclic aromatic polyketides, such as the tetracyclines and anthracyclines, are synthesized by bacterial aromatic polyketide synthases (PKSs). Such PKSs contain a single set of iteratively used individual proteins for the construction of a highly labile poly-β-carbonyl intermediate that is cyclized by associated enzymes to the core aromatic polyketide. A unique polyketide biosynthetic pathway recently identified in the marine strain ‘Streptomyces maritimus’ deviates from the normal aromatic PKS model in the generation of a diverse series of chiral, non-aromatic polyketides.Results: A 21.3 kb gene cluster encoding the biosynthesis of the enterocin and wailupemycin family of polyketides from ‘S. maritimus’ has been cloned and sequenced. The biosynthesis of these structurally diverse polyketides is encoded on a 20 open reading frames gene set containing a centrally located aromatic PKS. The architecture of this novel type II gene set differs from all other aromatic PKS clusters by the absence of cyclase and aromatase encoding genes and the presence of genes encoding the biosynthesis and attachment of the unique benzoyl-CoA starter unit. In addition to the previously reported heterologous expression of the gene set, in vitro and in vivo expression studies with the cytochrome P-450 EncR and the ketoreductase EncD, respectively, support the involvement of the cloned genes in enterocin biosynthesis.Conclusions: The enterocin biosynthesis gene cluster represents the most versatile type II PKS system investigated to date. A large series of divergent metabolites are naturally generated from the single biochemical pathway, which has several metabolic options for creating structural diversity. The absence of cyclase and aromatase gene products and the involvement of an oxygenase-catalyzed Favorskii-like rearrangement provide insight into the observed spontaneity of this pathway. This system provides the foundation for engineering hybrid expression sets in the generation of structurally novel compounds for use in drug discovery.  相似文献   

20.
BACKGROUND: Prodiginines are a large family of pigmented oligopyrrole antibiotics with medicinal potential as immunosuppressants and antitumour agents that are produced by several actinomycetes and other eubacteria. Recently, a gene cluster in Streptomyces coelicolor encoding the biosynthesis of undecylprodiginine and butyl-meta-cycloheptylprodiginine has been sequenced. RESULTS: Using sequence comparisons, functions have been assigned to the majority of the genes in the cluster, several of which encode homologues of enzymes involved in polyketide, non-ribosomal peptide, and fatty acid biosynthesis. Based on these assignments, a complete pathway for undecylprodiginine and butyl-meta-cycloheptylprodiginine biosynthesis in S. coelicolor has been deduced. Gene knockout experiments have confirmed the deduced roles of some of the genes in the cluster. CONCLUSIONS: The analysis presented provides a framework for a general understanding of the genetics and biochemistry of prodiginine biosynthesis, which should stimulate rational approaches to the engineered biosynthesis of novel prodiginines with improved immunosuppressant or antitumour activities. In addition, new mechanisms for chain initiation and termination catalysed by hitherto unobserved domains in modular multienzyme systems have been deduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号