首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Brown [1] introducedk-step methods usingl derivatives. Necessary and sufficient conditions forA 0-stability and stiff stability of these methods are given. These conditions are used to investigate for whichk andl the methods areA 0-stable. It is seen that for allk andl withk1.5 (l+1) the methods areA 0-stable and stiffly stable. This result is conservative and can be improved forl sufficiently large. For smallk andl A 0-stability has been determined numerically by implementing the necessary and sufficient condition.  相似文献   

2.
The concept of (A 0,S)-stability for Volterra integral equations of the second kind will be extended to that of the first kind equations. We will show that stability polynomials for methods employing reducible quadrature rules, as applied to the first kind equations, can be trivially obtained from the results for the second kind equations.  相似文献   

3.
P-stability is an analogous stability property toA-stability with respect to delay differential equations. It is defined by using a scalar test equation similar to the usual test equation ofA-stability. EveryP-stable method isA-stable, but anA-stable method is not necessarilyP-stable. We considerP-stability of Runge-Kutta (RK) methods and its variation which was originally introduced for multistep methods by Bickart, and derive a sufficient condition for an RK method to have the stability properties on the basis of an algebraic characterization ofA-stable RK methods recently obtained by Schere and Müller. By making use of the condition we clarify stability properties of some SIRK and SDIRK methods, which are easier to implement than fully implicit methods, applied to delay differential equations.  相似文献   

4.
A necessary condition forB-stability is derived. Then it is shown that the Runge-Kutta methods of Lobatto type III A and III B and some other methods are notB-stable.  相似文献   

5.
The oldest concept of unconditional stability of numerical integration methods for ordinary differential systems is that ofA-stability. This concept is related to linear systems having constant coefficients and has been introduced by Dahlquist in 1963. More recently, since another contribution of Dahlquist in 1975, there has been much interest in unconditional stability properties of numerical integration methods when applied to non-linear dissipative systems (G-stability,BN-stability,A-contractivity). Various classes of implicit Runge-Kutta methods have already been shown to beBN-stable. However, contrary to the property ofA-stability, when implementing such a method for practical use this unconditional stability property may be lost. The present note clarifies this for a class of diagonally implicit methods and shows at the same time that Rosenbrock's method is notBN-stable.  相似文献   

6.
Summary All rational approximations to exp(z) of order 2m– (m denotes the maximal degree of nominator and denominator) are given by a closed formula involving real parameters. Using the theory of order stars [9], necessary and sufficient conditions forA-stability (respectivelyI-stability) are given. On the basis of this characterization relations between the concepts ofA-stability and algebraic stability (for implicit Runge-Kutta methods) are investigated. In particular we can partly prove the conjecture that to any irreducibleA-stableR(z) of oderp0 there exist algebraically stable Runge-Kutta methods of the same order withR(z) as stability function.  相似文献   

7.
It is a well-known result of Dahlquist that the linear (A-stability) and non-linear (G-stability) stability concepts are equivalent for multistep methods in their one-leg formulation. We show to what extent this result also holds for Runge-Kutta methods. Dedicated to Germund Dahlquist on the occasion of his 60th birthday.  相似文献   

8.
Variable stepsize stability results are found for three representative multivalue methods. For the second order BDF method, a best possible result is found for a maximum stepsize ratio that will still guarantee A(0)-stability behaviour. It is found that under this same restriction, A()-stability holds for 70°. For a new two stage two value first order method, which is L-stable for constant stepsize, A(0)-stability is maintained for stepsize ratios as high as aproximately 2.94. For the third order BDF method, a best possible result of (1/2)(1+ ) is found for a ratio bound that will still guarantee zero-stability.  相似文献   

9.
New classes of continuous two-step Runge-Kutta methods for the numerical solution of ordinary differential equations are derived. These methods are developed imposing some interpolation and collocation conditions, in order to obtain desirable stability properties such as A-stability and L-stability. Particular structures of the stability polynomial are also investigated.  相似文献   

10.
An elementary proof is given of theA-stability of implicit Runge-Kutta methods for which the corresponding rational function is on the diagonal or one of the first two subdiagonals of the Padé table for the exponential function. The result is extended to give necessary and sufficient conditions for theA-stability ofn-stage methods of order greater than or equal to 2n–2.  相似文献   

11.
Summary Using a special representation of Runge-Kutta methods (W-transformation), simple characterizations ofA-stability andB-stability have been obtained in [9, 8, 7]. In this article we will make this representation and their conclusions more transparent by considering the exact Runge-Kutta method. Finally we demonstrate by a numerical example that for difficult problemsB-stable methods are superior to methods which are onlyA-stable.Talk, presented at the conference on the occasion of the 25th anniversary of the founding ofNumerische Mathematik, TU Munich, March 19–21, 1984  相似文献   

12.
Numerical stability of both explicit and implicit Runge-Kutta methods for solving ordinary differential equations with an additive noise term is studied. The concept of numerical stability of deterministic schemes is extended to the stochastic case, and a stochastic analogue of Dahlquist'sA-stability is proposed. It is shown that the discretization of the drift term alone controls theA-stability of the whole scheme. The quantitative effect of implicitness uponA-stability is also investigated, and stability regions are given for a family of implicit Runge-Kutta methods with optimal order of convergence.This author was partially supported by the Italian Consiglio Nazionale delle Ricerche.  相似文献   

13.
Some easy-to-check conditions are given which together are sufficient forA()-stability. As an application the greatest 's are determined which giveA()-stability for the differentiation formulae withk=3, 4, 5 and 6.  相似文献   

14.
Recently, we have proved that the Radau IA and Lobatto IIIC methods are P-stable, i.e., they have an analogous stability property to A-stability with respect to scalar delay differential equations (DDEs). In this paper, we study stability of those methods applied to multidimensional DDEs. We show that they have a similar property to P-stability with respect to multidimensional equations which satisfy certain conditions for asymptotic stability of the zero solutions. The conditions are closely related to stability criteria for DDEs considered in systems theory. Received October 8, 1996 / Revised version received February 21, 1997  相似文献   

15.
16.
A class of methods for solving the initial value problem for ordinary differential equations is studied. We developr-block implicit one-step methods which compute a block ofr new values simultaneously with each step of application. These methods are examined for the property ofA-stability. A sub-class of formulas is derived which is related to Newton-Cotes quadrature and it is shown that for block sizesr=1,2,..., 8 these methods areA-stable while those forr=9,10 are not. We constructA-stable formulas having arbitrarily high orders of accuracy, even stiffly (strongly)A-stable formulas.  相似文献   

17.
This paper presents a class of hybrid one-step methods that are obtained by using Cramer's rule and rational approximations to function exp(q). The algorithms fall into the catalogue of implicit formula, which involves sth order derivative and s 1 free parameters. The order of the algorithms satisfies s 1≤p≤2s 2. The stability of the methods is also studied, necessary and sufficient conditions for A-stability and L-stability are given. In addition, some examples are also given to demonstrate the method presented.  相似文献   

18.
This paper is concerned with the study of the delay-dependent stability of Runge–Kutta methods for delay differential equations. First, a new sufficient and necessary condition is given for the asymptotic stability of analytical solution. Then, based on this condition, we establish a relationship between τ(0)-stability and the boundary locus of the stability region of numerical methods for ordinary differential equations. Consequently, a class of high order Runge–Kutta methods are proved to be τ(0)-stable. In particular, the τ(0)-stability of the Radau IIA methods is proved.  相似文献   

19.
Under the assumption that an implicit Runge-Kutta method satisfies a certain stability estimate for linear systems with constant coefficientsl 2-stability for nonlinear systems is proved. This assumption is weaker than algebraic stability since it is satisfied for many methods which are not evenA-stable. Some local smoothness in the right hand side of the differential equation is needed, but it may have a Jacobian and higher derivatives with large norms. The result is applied to a system derived from a strongly nonlinear parabolic equation by the method of lines.  相似文献   

20.
Formulae for a class ofA-stable quadrature methods, or equivalently a certain implicit Runge-Kutta scheme, are given. A short proof of the strongA-stability is presented.On leave of absence from Chalmers University of Technology, Göteborg, Sweden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号