首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we consider the k-fixed-endpoint path cover problem on proper interval graphs, which is a generalization of the path cover problem. Given a graph G and a set T of k vertices, a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint simple paths that covers the vertices of G, such that the vertices of T are all endpoints of these paths. The goal is to compute a k-fixed-endpoint path cover of G with minimum cardinality. We propose an optimal algorithm for this problem with runtime O(n), where n is the number of intervals in G. This algorithm is based on the Stair Normal Interval Representation (SNIR) matrix that characterizes proper interval graphs. In this characterization, every maximal clique of the graph is represented by one matrix element; the proposed algorithm uses this structural property, in order to determine directly the paths in an optimal solution.  相似文献   

2.
A path cover of a graph G=(V,E) is a family of vertex-disjoint paths that covers all vertices in V. Given a graph G, the path cover problem is to find a path cover of minimum cardinality. This paper presents a simple O(n)-time approximation algorithm for the path cover problem on circular-arc graphs given a set of n arcs with endpoints sorted. The cardinality of the path cover found by the approximation algorithm is at most one more than the optimal one. By using the result, we reduce the path cover problem on circular-arc graphs to the Hamiltonian cycle and Hamiltonian path problems on the same class of graphs in O(n) time. Hence the complexity of the path cover problem on circular-arc graphs is the same as those of the Hamiltonian cycle and Hamiltonian path problems on circular-arc graphs.  相似文献   

3.
A path cover of a graph G=(V,E) is a set of pairwise vertex-disjoint paths such that the disjoint union of the vertices of these paths equals the vertex set V of G. The path cover problem is, given a graph, to find a path cover having the minimum number of paths. The path cover problem contains the Hamiltonian path problem as a special case since finding a path cover, consisting of a single path, corresponds directly to the Hamiltonian path problem. A graph is a distance-hereditary graph if each pair of vertices is equidistant in every connected induced subgraph containing them. The complexity of the path cover problem on distance-hereditary graphs has remained unknown. In this paper, we propose the first polynomial-time algorithm, which runs in O(|V|9) time, to solve the path cover problem on distance-hereditary graphs.  相似文献   

4.
The conditional covering problem (CCP) aims to locate facilities on a graph, where the vertex set represents both the demand points and the potential facility locations. The problem has a constraint that each vertex can cover only those vertices that lie within its covering radius and no vertex can cover itself. The objective of the problem is to find a set that minimizes the sum of the facility costs required to cover all the demand points. An algorithm for CCP on paths was presented by Horne and Smith (Networks 46(4):177–185, 2005). We show that their algorithm is wrong and further present a correct O(n 3) algorithm for the same. We also propose an O(n 2) algorithm for the CCP on paths when all vertices are assigned unit costs and further extend this algorithm to interval graphs without an increase in time complexity.  相似文献   

5.
A connected graph G is a tree-clique graph if there exists a spanning tree T (a compatible tree) such that every clique of G is a subtree of T. When T is a path the connected graph G is a proper interval graph which is usually defined as intersection graph of a family of closed intervals of the real line such that no interval contains another. We present here metric characterizations of proper interval graphs and extend them to tree-clique graphs. This is done by demonstrating “local” properties of tree-clique graphs with respect to the subgraphs induced by paths of a compatible tree. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Path graphs     
The concept of a line graph is generalized to that of a path graph. The path graph Pk(G) of a graph G is obtained by representing the paths Pk in G by vertices and joining two vertices whenever the corresponding paths Pk in G form a path Pk+1 or a cycle Ck. P3-graphs are characterized and investigated on isomorphism and traversability. Trees and unicyclic graphs with hamiltonian P3-graphs are characterized.  相似文献   

7.
A set of vertices S in a graph is convex if it contains all vertices which belong to shortest paths between vertices in S. The convexity number c(G) of a graph G is the maximum cardinality of a convex set of vertices which does not contain all vertices of G. We prove NP-completeness of the problem to decide for a given bipartite graph G and an integer k whether c(G) ≥ k. Furthermore, we identify natural necessary extension properties of graphs of small convexity number and study the interplay between these properties and upper bounds on the convexity number.  相似文献   

8.
Both the line graph and the clique graph are defined as intersection graphs of certain families of complete subgraphs of a graph. We generalize this concept. By a k-edge of a graph we mean a complete subgraph with k vertices or a clique with fewer than k vertices. The k-edge graph Δk(G) of a graph G is defined as the intersection graph of the set of all k-edges of G. The following three problems are investigated for k-edge graphs. The first is the characterization problem. Second, sets of graphs closed under the k-edge graph operator are found. The third problem is the question of convergence: What happens to a graph if we take iterated k-edge graphs?  相似文献   

9.
An intersection graph of rectangles in the (x, y)-plane with sides parallel to the axes is obtained by representing each rectangle by a vertex and connecting two vertices by an edge if and only if the corresponding rectangles intersect. This paper describes algorithms for two problems on intersection graphs of rectangles in the plane. One is an O(n log n) algorithm for finding the connected components of an intersection graph of n rectangles. This algorithm is optimal to within a constant factor. The other is an O(n log n) algorithm for finding a maximum clique of such a graph. It seems interesting that the maximum clique problem is polynomially solvable, because other related problems, such as the maximum stable set problem and the minimum clique cover problem, are known to be NP-complete for intersection graphs of rectangles. Furthermore, we briefly show that the k-colorability problem on intersection graphs of rectangles is NP-complete.  相似文献   

10.
Diperfect graphs     
Gallai and Milgram have shown that the vertices of a directed graph, with stability number α(G), can be covered by exactly α(G) disjoint paths. However, the various proofs of this result do not imply the existence of a maximum stable setS and of a partition of the vertex-set into paths μ1, μ2, ..., μk such tht |μiS|=1 for alli. Later, Gallai proved that in a directed graph, the maximum number of vertices in a path is at least equal to the chromatic number; here again, we do not know if there exists an optimal coloring (S 1,S 2, ...,S k) and a path μ such that |μ ∩S i|=1 for alli. In this paper we show that many directed graphs, like the perfect graphs, have stronger properties: for every maximal stable setS there exists a partition of the vertex set into paths which meet the stable set in only one point. Also: for every optimal coloring there exists a path which meets each color class in only one point. This suggests several conjecties similar to the perfect graph conjecture. Dedicated to Tibor Gallai on his seventieth birthday  相似文献   

11.
Jun-Jie Pan 《Discrete Mathematics》2006,306(17):2091-2096
An isometric path between two vertices in a graph G is a shortest path joining them. The isometric path number of G, denoted by ip(G), is the minimum number of isometric paths needed to cover all vertices of G. In this paper, we determine exact values of isometric path numbers of complete r-partite graphs and Cartesian products of 2 or 3 complete graphs.  相似文献   

12.
A near perfect matching is a matching saturating all but one vertex in a graph. Let G be a connected graph. If any n independent edges in G are contained in a near perfect matching where n is a positive integer and n(|V(G)|-2)/2, then G is said to be defect n-extendable. If deleting any k vertices in G where k|V(G)|-2, the remaining graph has a perfect matching, then G is a k-critical graph. This paper first shows that the connectivity of defect n-extendable graphs can be any integer. Then the characterizations of defect n-extendable graphs and (2k+1)-critical graphs using M-alternating paths are presented.  相似文献   

13.
The antibandwidth maximization problem (AMP) consists of labeling the vertices of a n-vertex graph G with distinct integers from 1 to n such that the minimum difference of labels of adjacent vertices is maximized. This problem can be formulated as a dual problem to the well known bandwidth problem. Exact results have been proved for some standard graphs like paths, cycles, 2 and 3-dimensional meshes, tori, some special trees etc., however, no algorithm has been proposed for the general graphs. In this paper, we propose a memetic algorithm for the antibandwidth maximization problem, wherein we explore various breadth first search generated level structures of a graph—an imperative feature of our algorithm. We design a new heuristic which exploits these level structures to label the vertices of the graph. The algorithm is able to achieve the exact antibandwidth for the standard graphs as mentioned. Moreover, we conjecture the antibandwidth of some 3-dimensional meshes and complement of power graphs, supported by our experimental results.  相似文献   

14.
In this paper, we consider the following problem: of all tricyclic graphs or trees of order n with k pendant vertices (n,k fixed), which achieves the maximal signless Laplacian spectral radius?We determine the graph with the largest signless Laplacian spectral radius among all tricyclic graphs with n vertices and k pendant vertices. Then we show that the maximal signless Laplacian spectral radius among all trees of order n with k pendant vertices is obtained uniquely at Tn,k, where Tn,k is a tree obtained from a star K1,k and k paths of almost equal lengths by joining each pendant vertex to one end-vertex of one path. We also discuss the signless Laplacian spectral radius of Tn,k and give some results.  相似文献   

15.
Dedicated to the memory of Paul Erdős A graph G is k-linked if G has at least 2k vertices, and, for any vertices , , ..., , , , ..., , G contains k pairwise disjoint paths such that joins for i = 1, 2, ..., k. We say that G is k-parity-linked if G is k-linked and, in addition, the paths can be chosen such that the parities of their lengths are prescribed. We prove the existence of a function g(k) such that every g(k)-connected graph is k-parity-linked if the deletion of any set of less than 4k-3 vertices leaves a nonbipartite graph. As a consequence, we obtain a result of Erdős–Pósa type for odd cycles in graphs of large connectivity. Also, every -connected graph contains a totally odd -subdivision, that is, a subdivision of in which each edge of corresponds to an odd path, if and only if the deletion of any vertex leaves a nonbipartite graph. Received May 13, 1999/Revised June 19, 2000  相似文献   

16.
The shortest-paths problem is a fundamental problem in graph theory and finds diverse applications in various fields. This is why shortest path algorithms have been designed more thoroughly than any other algorithm in graph theory. A large number of optimization problems are mathematically equivalent to the problem of finding shortest paths in a graph. The shortest-path between a pair of vertices is defined as the path with shortest length between the pair of vertices. The shortest path from one vertex to another often gives the best way to route a message between the vertices. This paper presents anO(n 2) time sequential algorithm and anO(n 2/p+logn) time parallel algorithm on EREW PRAM model for solving all pairs shortest paths problem on circular-arc graphs, wherep andn represent respectively the number of processors and the number of vertices of the circular-arc graph.  相似文献   

17.
Let T = (V, A) be a directed tree. Given a collection P{\mathcal{P}} of dipaths on T, we can look at the arc-intersection graph I(P,T){I(\mathcal{P},T)} whose vertex set is P{\mathcal{P}} and where two vertices are connected by an edge if the corresponding dipaths share a common arc. Monma and Wei, who started their study in a seminal paper on intersection graphs of paths on a tree, called them DE graphs (for directed edge path graphs) and proved that they are perfect. DE graphs find one of their applications in the context of optical networks. For instance, assigning wavelengths to set of dipaths in a directed tree network consists in finding a proper coloring of the arc-intersection graph. In the present paper, we give
–  a simple algorithm finding a minimum proper coloring of the paths.  相似文献   

18.
The path layer matrix (or path degree sequence) of a graph G contains quantitative information about all possible paths in G. The entry (i,j) of this matrix is the number of paths in G having initial vertex i and length j. It is known that there are cubic graphs on 62 vertices having the same path layer matrix (A. A. Dobrynin. J Graph Theory 17 (1993) 1–4). A new upper bound of 36 vertices for the least order of such cubic graphs is established. This bound is realized by cubic graphs without cut‐vertices. © 2001 John Wiley & Sons, Inc. J Graph Theory 38: 177–182, 2001  相似文献   

19.
Let F be a finite family of non-empty sets. An undirected graph G is an intersection graph for F if there is a one-to-one correspondence between the vertices of G and the sets of F such that two sets have a non-empty intersection exactly when the corresponding vertices are adjacent in G. If this is the case then F is said to be an intersection model for the graph G. If F is a family of paths within a tree T, then G is called a path graph. This paper proves a characterization for the path graphs and then gives a polynomial time algorithm for their recognition. If G is a path graph the algorithm constructs a path intersection model for G.  相似文献   

20.
In this paper, we show that among all the connected graphs with n vertices and k cut vertices, the maximal signless Laplacian spectral radius is attained uniquely at the graph Gn,k, where Gn,k is obtained from the complete graph Kn-k by attaching paths of almost equal lengths to all vertices of Kn-k. We also give a new proof of the analogous result for the spectral radius of the connected graphs with n vertices and k cut vertices (see [A. Berman, X.-D. Zhang, On the spectral radius of graphs with cut vertices, J. Combin. Theory Ser. B 83 (2001) 233-240]). Finally, we discuss the limit point of the maximal signless Laplacian spectral radius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号