首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In eukaryotic cells, the mRNA-protein interplay can be dramatically influenced by non-coding RNAs (ncRNAs). Although this new paradigm is now widely accepted, an understanding of the effect of ncRNAs on complex genetic networks is lacking. To clarify what may happen in this case, we propose a mean-field kinetic model describing the influence of ncRNA on a complex genetic network with a distributed architecture including mutual protein-mediated regulation of many genes transcribed into mRNAs. ncRNA is considered to associate with mRNAs and inhibit their translation and/or facilitate degradation. Our results are indicative of the richness of the kinetics under consideration. The main complex features are found to be bistability and oscillations. One could expect to find kinetic chaos as well. The latter feature has however not been observed in our calculations. In addition, we illustrate the difference in the regulation of distributed networks by mRNA and ncRNA.  相似文献   

3.
In eukaryotic cells, protein-coding sequences constitute a relatively small part of the genome. The rest of the genome is transcribed to non-coding RNAs (ncRNAs). Such RNAs form the cornerstone of a regulatory network that operates in parallel with the protein network. Their biological functions are based primarily on the ability to pair with and deactivate target messenger RNAs (mRNAs). To clarify the likely role of ncRNAs in complex genetic networks, we present and comprehensively analyze a kinetic model of one of the key counterparts of the network architectures. Specifically, the genes transcribed to ncRNAs are considered to interplay with a hierarchical two-layer set of genes transcribed to mRNAs. The genes forming the bottom layer are regulated from the top and negatively self-regulated. If the former regulation is positive, the dependence of the RNA populations on the governing parameters is found to be often non-monotonous. Specifically, the model predicts bistability. If the regulation is negative, the dependence of the RNA populations on the governing parameters is monotonous. In particular, the population of the mRNAs, corresponding to the genes forming the bottom layer, is nearly constant.  相似文献   

4.
5.

Background  

Long non-protein-coding RNAs (ncRNAs) are emerging as important regulators of cellular differentiation and are widely expressed in the brain.  相似文献   

6.
The studies on the fates of the trophocytes, the apoptosis and autophagy in the gonad of Isohypsibius granulifer granulifer have been described using transmission electron microscope, light and fluorescent microscopes. The results presented here are the first that are connected with the cell death of nurse cells in the gonad of tardigrades. However, here we complete the results presented by Węglarska (1987).The reproductive system of I. g. granulifer contains a single sack-like hermaphroditic gonad and a single gonoduct. The gonad is composed of three parts: a germarium filled with proliferating germ cells (oogonia); a vitellarium that has clusters of female germ cells (the region of oocytes development); and a male part filled with male germ cells in which the sperm cells develop. The trophocytes (nurse cells) show distinct alterations during all of the stages of oogenesis: previtello-, vitello- and choriogenesis. During previtellogenesis the female germ cells situated in the vitellarium are connected by cytoplasmic bridges, and form clusters of cells. No ultrastructural differences appear among the germ cells in a cluster during this stage of oogenesis. In early vitellogenesis, the cells in each cluster start to grow and numerous organelles gradually accumulate in their cytoplasm. However, at the beginning of the middle of vitellogenesis, one cell in each cluster starts to grow in order to differentiate into oocyte, while the remaining cells are trophocytes. Eventually, the cytoplasmic bridges between the oocyte and trophocytes disappear. Autophagosomes also appear in the cytoplasm of nurse cells together with many degenerating organelles. The cytoplasm starts to shrink, which causes the degeneration of the cytoplasmic bridges between trophocytes. Apoptosis begins when the cytoplasm of these cells is full of autophagosomes/autolysosomes and causes their death.  相似文献   

7.
Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existence of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use.  相似文献   

8.
In this study, we investigated the effects of extracellular matrix rigidity, an important physical property of microenvironments regulating cell morphology and functions, on sonoporation facilitated by targeted microbubbles, highlighting the role of microbubbles. We conducted mechanistic studies at the cellular level on physiologically relevant soft and rigid substrates. By developing a unique imaging strategy, we first resolved details of the 3D attachment configurations between targeted microbubbles and cell membrane. High-speed video microscopy then unveiled bubble dynamics driven by a single ultrasound pulse. Finally, we evaluated the cell membrane permeabilization using a small molecule model drug. Our results demonstrate that: (1) stronger targeted microbubble attachment was formed for cells cultured on the rigid substrate, while six different attachment configurations were revealed in total; (2) more violent bubble oscillation was observed for cells cultured on the rigid substrate, while one third of bubbles attached to cells on the soft substrate exhibited deformation shortly after ultrasound was turned off; (3) higher acoustic pressure was needed to permeabilize the cell membrane for cells on the soft substrate, while under the same ultrasound condition, acoustically-activated microbubbles generated larger pores as compared to cells cultured on the soft substrate. The current findings provide new insights to understand the underlying mechanisms of sonoporation in a physiologically relevant context and may be useful for the clinical translation of sonoporation.  相似文献   

9.
Cycloramphus fuliginosus males (Amphibia, Leptodactylidae) have discoid glandular elevations on the abdominal inferior body region which are considered a characteristic of genus. In this work, this sexually dimorphic gland of C. fuliginosus was investigated by low vacuum scanning electron microscopy, light microscopy, and transmission electron microscopy. In this cycloramphid, the covered integument exhibits the basic structure: the epidermis, a keratinized squamous stratified epithelium with flask cells, and the dermis. The dermis is subdivided into spongious and compact dermal layers. In the iliac gland region, an aggregate of small mucous glands and larger syncytial tubuloalveolar glands occur in the spongious dermis, and they do not go beyond the Eberth-Katschenko layer limit. The adenocytes of the mucous gland produce neutral glycoproteins, in contrast to the larger tubuloalveolar glands that elaborate a proteinaceous secretion. Myoepithelial cells surround the alveoli, and play an important role in the secretion extrusion. The final secretion, elaborated by the iliac gland, is a mixture of mucus and protein. Both secretions are important to the cycloramphid biology, and may act as pheromone and/or as chemical parental care.  相似文献   

10.
An enhanced metamaterial absorber based on the circumscribed-cross resonator is introduced in this paper. The new structure is polarization-independent, due to the symmetry of its unit cell, and is proven efficient for the attenuation of obliquely incident waves. The absorption mechanism is thoroughly investigated and is found to be mainly related to the losses of the dielectric substrate. Furthermore, by exploiting the scalability property of metamaterials, the operational bandwidth of our design can be drastically improved by placing unit cells with properly scaled resonators adjacent to each other. In this context, various combinations of three, four, and nine unit cells that can increase the full width at half maximum up to as much as 11.18?%, are developed. The overall performance of the proposed configurations is deemed promising for the realization of microwave metamaterial absorbers for several practical applications.  相似文献   

11.
《Physica A》2005,352(1):171-201
We review recent theoretical work that analyzes experimental measurements of the shape, fluctuations and adhesion properties of biological cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the shape and adhesion of elastic cells with fluid-filled vesicles. In red blood cells (RBC), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wavevector and frequency dependence of the fluctuation spectrum of RBC indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton–membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect topological defects induced in the cytoskeleton network by ATP. The shapes of cells that adhere to a substrate are strongly determined by the cytoskeletal elasticity that can be varied experimentally by drugs that depolymerize the cytoskeleton. This leads to a tension-driven retraction of the cell body and a pearling instability of the resulting ray-like protrusions. Recent experiments have shown that adhering cells exert polarized forces on substrates. The interactions of such “force dipoles” in either bulk gels or on surfaces can be used to predict the nature of self-assembly of cell aggregates and may be important in the formation of artificial tissues. Finally, we note that cell adhesion strongly depends on the forces exerted on the adhesion sites by the tension of the cytoskeleton. The size and shape of the adhesion regions are strongly modified as the tension is varied and we present an elastic model that relates this tension to deformations that induce the recruitment of new molecules to the adhesion region. In all these examples, cell shape and adhesion differ from vesicle shape and adhesion due to the presence of the elastic cytoskeleton and to the fact that active processes (ATP, molecular motors) within the cell modify cytoskeletal elasticity and tension.  相似文献   

12.
乔治  冀建利  张彦立  刘虎  李同锴 《中国物理 B》2017,26(6):68802-068802
P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on the performance of a-SiC:H(n)/c-Si(p) SHJ solar cells was investigated systematically. It is shown that the open circuit voltage(V_(oc)) and fill factor(F F) are very sensitive to these parameters. In addition, by analyzing equilibrium energy band diagram and electric field distribution, the influence mechanisms that interface states, conduction band offset, and front contact impact on the carrier transport, interface recombination and cell performance were studied in detail. Finally, the optimum parameters for the a-SiC:H(n)/c-Si(p) SHJ solar cells were provided. By employing these optimum parameters, the efficiency of SHJ solar cell based on p-type c-Si was significantly improved.  相似文献   

13.

Herein, we describe a multifunctional anti-cancer prodrug system based on water-dispersible carbon nanotube (CNT); this prodrug system features active targeting, pH-triggered drug release, and photodynamic therapeutic properties. For this prodrug system (with the size of ~100–300 nm), an anti-cancer drug, doxorubicin (DOX), was incorporated onto CNT via a cleavable hydrazone bond; and a targeting ligand (folic acid) was also coupled onto CNT. This prodrug can preferably enter folate receptor (FR)-positive cancer cells and undergo intracellular release of the drug triggered by the reduced pH. The targeted CNT-based prodrug system can cause lower cell viability toward FR-positive cells compared to the non-targeted ones. Moreover, the CNT carrier exhibits photodynamic therapeutic (PDT) action; and the cell viability of FR-positive cancer cells can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of the DOX–CNT prodrug. This study may offer some useful insights on designing and improving the applicability of CNT for other drug delivery systems.

  相似文献   

14.
A model for the asymmetric coupling of two oscillatory cells is considered. The coupling between the cells is both through diffusional exchange (symmetric) and through the electromigration of ionic reactant species from one cell to the other (asymmetric) in applied electric fields. The kinetics in each cell are the same and based on the Gray-Scott scheme. Without the electric field, only simple, stable dynamics are seen. The effect of the asymmetry (applying electric fields) is to create a wide variety of stable dynamics, multistability, multiperiodic oscillations, quasiperiodicity and chaos being observed, this complexity in response being more prevalent at weaker coupling rates and at weaker field strengths. The results are obtained using a standard dynamical systems continuation program, though asymptotic results are obtained for strong coupling rates and strong electric fields. These are seen to agree well with the numerically determined values in the appropriate parameter regimes. (c) 2002 American Institute of Physics.  相似文献   

15.
Today, neurodegenerative diseases are very common among people. As a result, researchers are investigating methods for treatment of these diseases. One therapeutic approach is differentiating stem cells into neural cells to replace damaged areas of the brain. Cell attachment is the first, necessary step for the process of differentiation. Hence, we tried to enhance cell adhesion and proliferation of bone marrow stem cells on poly(?-caprolactone) (PCL) scaffolds through modifying this substrate with amine functional groups. The presence of amine groups was confirmed by Fourier transform infrared spectrometry (FTIR). Protein adsorption was measured at 280 nm via UV-spectrometry. The proliferation of differentiated neurons was assessed by 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (a dye) and cresyl violet staining. Finally, the morphology of differentiated neurons was shown by scanning electron microscopy (SEM). Results showed that amine modification of PCL scaffolds enhanced protein absorption and, consequently, cell adhesion and proliferation.  相似文献   

16.
Zinc sulfide (ZnS) nanostructures have attracted increasing attention due to their potential application in both conditional optical devices and new generation of nano-electronics and nano-optoelectronics because of their special structure-related chemical and physical properties. In this article, beginning with the synthesis of ZnS nanostructures with various original morphologies, we summarize the state-of-art research progresses on ZnS nanostructures. This is followed by the recent progresses on the improvement of their properties, especially the novel potential applications. We highlight the recent achievements on photoluminescence, photocatalysis, light-emitting diodes (LEDs), field-effect transistors (FET), sensors, dye-sensitized solar cells, and field emission (FE) based on ZnS nanostructures. Finally, we present an outlook on the future development of ZnS nanostructures.  相似文献   

17.
于斌  李恒  陈丹妮  牛憨笨 《物理学报》2013,62(15):154206-154206
发展能实时检测完整细胞内多个生物分子随时空变化的单分子探测和追踪技术, 对于研究生命过程的分子机理具有重要意义. 在变形光栅多阶成像和双螺旋点扩散函数成像方法的基础上, 基于波前编码的原理, 提出将二者优化结合, 获得全新的衍射光学元件, 该器件同时具有多重平面成像和双螺旋点扩散函数成像的功能, 旨在解决活细胞内单分子探测和追踪技术中的大景深探测难题. 设计和制备了该器件, 并基于该器件搭建了显微成像系统, 实验模拟证明该衍射光学元件同时可实现轴向12 μ的探测范围, 与理论设计结果相符合, 从而有效扩大了显微镜系统的景深, 证明了设计的可行性. 关键词: 多分子追踪 衍射光学元件 变形光栅 双螺旋点扩散函数  相似文献   

18.
The development of nanotechnologies may lead to dissemination of potentially toxic nanoparticles in the environment. Toxicology of these nano-sized particles is thus attracting attention of public and governments worldwide. Our research is focused on the in vitro response of eukaryotic cells to nanoparticles exposure. For this purpose, we used cellular models of primary target organs (lung: A549 alveolar epithelial cells), or secondary target organs (liver: WIF-B9, Can-10 and kidneys: NRK-52E, LLC-PK1 proximal cells), i.e., organs exposed if nanoparticles are translocated through epithelial barriers. These cells were exposed to TiO2, SiC nanoparticles or multi-walled carbon nanotubes (MWCNT). The influence of nanoparticles physico-chemical characteristics on various toxicological endpoints (cytotoxicity, reactive oxygen species generation, genotoxicity) was specified. Our data demonstrate that nanoparticles toxicity depend on their size, morphology, and chemical composition, the finest, spherical shaped, and anatase TiO2 nanoparticles being the more cytotoxic to NRK-52E cells, while SiC nanoparticles exert almost no cytotoxicity. MWCNT cytotoxicity neither depended on their length, nor on the presence of metal impurities. Nanoparticles cytotoxicity also depended on the exposed cell line. All the tested nanoparticles were uptaken by cells and caused intracellular reactive oxygen species generation. Relative to genotoxic effects, DNA strand breaks were detected in NRK-52E cells via the alkaline comet assay after exposure of cells to TiO2 nanoparticles and to a lesser extent after exposure to MWCNT, but no double strand breaks were detected. The originality of this study lies on the panel of nanomaterials which were tested on a variety of cell lines. All these data may lead to a better understanding of nanomaterial toxicity and hazards for health.  相似文献   

19.
In this study we histologically and histochemically describe the ventriculus of Dolichoderus bispinosus. The epithelium consists of two basic cell types, highly basophilic generative cells, and digestive cells. The latter present several cytoplasmic vesicles, rich in acidic and neutral polysaccharides, and basic proteins. Also, these cells exhibit an apocrine secretion pattern. A mass of fibrous material is observed on the surface of the epithelium. Finally, we discuss the results obtained.  相似文献   

20.
王桃红  陈长博  郭坤平  陈果  徐韬  魏斌 《中国物理 B》2016,25(3):38402-038402
The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester(P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer(CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode(OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs_2CO_3, bathophenanthroline(Bphen), and 8-hydroxyquinolatolithium(Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies(PCEs) of 3.0%–3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs_2CO_3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号