首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, an in‐tube solid‐phase microextraction column packed with mesoporous TiO2 nanoparticles, coupled with MALDI–TOF–MS, was applied to the selective enrichment and detection of phosphopeptides in complex biological samples. The mesoporous TiO2 nanoparticles with high specific surface areas, prepared by a sol–gel and solvothermal method, were injected into the capillary using a slurry packing method with in situ polymerized monolithic segments as frits. Compared with the traditional solid‐phase extraction method, the TiO2‐packed column with an effective length of 1 cm exhibited excellent selectivity (α‐casein/β‐casein/BSA molar ratio of 1:1:100) and sensitivity (10 fmol of a β‐casein enzymatic hydrolysis sample) for the enrichment of phosphopeptides. These performance characteristics make this system suitable for the detection of phosphorylated peptides in practical biosamples, such as nonfat milk.  相似文献   

2.
A porous crosslinked organic polymer based on N‐acryloxysuccinimide (NAS) and ethylene dimethacrylate (EDMA) was prepared inside 75 µm i.d. fused silica capillary as functionalizable monolithic stationary phase for electrochromatographic applications. Succinimide groups on the monolith surface provide reactive sites able to react readily through standard electrophile‐nucleophile chemistry. Propargylamine was used to prepare alkyne functionalized poly(NAS‐co‐EDMA). Onto this thiol‐reactive polymer surface was grafted adamantane units via a photochemically‐driven addition reaction. Chemical characterization was performed in situ after each synthetic step by means of Raman spectroscopy and grafting kinetics was investigated to ensure quantitative grafting of 1‐adamantanethiol. The as‐designed monolithic stationary phase exhibited typical reversed‐phase separation mechanism as evidenced by the linear increase of the logarithm of retention factor of neutral aromatic solutes with the increase of the aqueous buffer content in the mobile phase.  相似文献   

3.
A hyper‐cross‐linked polymer monolithic column, poly(methacrylatoethyl trimethyl ammonium‐co‐vinylbenzene chloride‐co‐divinylbenzene) (MATE‐co‐VBC‐co‐DVB) with phenyl and quaternary ammonium groups was successfully prepared in the current study. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The poly(MATE‐co‐VBC‐co‐DVB) monolithic column was demonstrated to have strong anion exchange/reversed‐phase (SAX/RP) mixed‐mode retention for analytes on capillary liquid chromatography (cLC). By using this monolithic column, we developed a rapid and sensitive method for the detection of DNA methylation. Our results showed that six nucleobases (adenine, guanine, cytosine, thymine, uracil, and 5‐methylcytosine (5‐mC)) can be baseline separated within 15 min by electrostatic repulsion and hydrophobic interactions between nucleobases and the monolithic stationary phase. The limit of detection (LOD, signal/noise=3) of 5‐mC is 0.014 pmol and endogenous 5‐mC can be distinctly detected by using only 10 ng genomic DNA, which is comparable to that obtained by mass spectrometry analysis. Furthermore, by using the method developed here, we found that DNA methylation inhibitor 5‐azacytidine (5‐aza‐C) and 5‐aza‐2′‐deoxycytidine (5‐aza‐CdR) could induce a significant decrease of genome‐wide DNA methylation in human lung carcinoma cells (A549) and cervical carcinoma cells (HeLa).  相似文献   

4.
A new reactive monolith, poly(3‐chloro‐2‐hydroxypropyl methacrylate‐co‐ethylene dimethacrylate), poly(HPMA‐Cl‐co‐EDMA) was synthesized and post‐functionalized by taurine (2‐aminoethane sulfonic acid) to obtain a zwitterionic stationary phase for capillary electrochromatography. The new stationary phase contained charged groups such as secondary amine providing anodic electroosmotic flow and sulfonic acid groups providing cathodic electroosmotic flow. Hence, the capillary electrochromatography separations with the new zwitterionic monolith were performed with either anodic or cathodic electroosmotic flow. The electrochromatographic separation of alkylbenzenes and phenols was successfully performed. The zwitterionic monolith also allowed the separation of nucleosides using only electrokinetic mode. Theoretical plate numbers up to ~105 plates/m were achieved. Our study is the first report based on poly(HPMA‐Cl‐co‐EDMA) reactive monolith post‐functionalized with a zwitterionic ligand allowing to operate in both anodic and cathodic electroosmotic flow modes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A polymer monolith microextraction method coupled with high‐performance liquid chromatography was developed for the determination of adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate. The monolithic column was synthesized inside fused‐silica capillaries using thermal initiation free‐radical polymerization with glycidyl methacrylate as the monomer, ethylene dimethacrylate as the cross‐linker, cyclohexanol, and 1‐dodecanol as the porogen. N‐Methylolacrylamide, an important hydrophilic monomer, was incorporated into the polymerization mixture to enhance the hydrophilicity of the poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) column. The obtained poly(glycidyl methacrylate‐coN‐methylolacrylamide‐co‐ethylene dimethacrylate) monolith was characterized by scanning electron microscopy, Fourier‐transform infrared spectra, and X‐ray photoelectron spectroscopy. Optimum conditions for the preconcentration and separation of the target adenosines were also investigated. Under the optimum conditions, we obtained acceptable linearities, low limits of detection, and good relative standard deviations. The developed polymer monolith microextraction with high‐performance liquid chromatography method exhibited a good performance with recovery values in the range of 76.9?104.7% when applied to the determination of the adenosines in five royal jelly samples.  相似文献   

6.
A poly(dibenzo‐18‐crown‐6) was used as a new solid‐phase extraction material for the selective enrichment of phosphopeptides. Isolation of phosphopeptides was achieved based on specific ionic interactions between poly(dibenzo‐18‐crown‐6) and the phosphate group of phosphopeptides. Thus, a method was developed and optimized, including loading, washing and elution steps, for the selective enrichment of phosphopeptides. To assess this potential, tryptic digest of three proteins (α‐ casein, β‐casein and ovalbumin) was applied on poly(dibenzo‐18‐crown‐6). The nonspecific products were removed by centrifugation and washing. The spectrometric analysis was performed using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Highly selective enrichment of both mono‐ and multiphosphorylated peptides was achieved using poly(dibenzo‐18‐crown‐6) as solid‐phase extraction material with minimum interference from nonspecific compounds. Furthermore, evaluation of the efficiency of the poly(dibenzo‐18‐crown‐6) was performed by applying the digest of egg white. Finally, quantum mechanical calculations were performed to calculate the binding energies to predict the affinity between poly(dibenzo‐18‐crown‐6) and various ligands. The newly identified solid‐phase extraction material was found to be a highly efficient tool for phosphopeptide recovery from tryptic digest of proteins.  相似文献   

7.
Efficient separation and enrichment of low‐abundance glycopeptides from complex biological samples is the key to the discovery of disease biomarkers. In this work, a new material was prepared by coating copper tetra(N‐carbonylacrylic) aminephthalocyanine and iminodiacetic acid onto poly(glycidyl methacrylate‐pentaerythritol triacrylate) monolith. The monolith was applied to polymer monolithic microextraction for specific capture of glycopeptides coupled with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The developed monolith exhibited satisfactory efficiency for glycopeptide enrichment with high selectivity and detection sensitivity. When the tryptic digest of immunoglobulin G was used as the sample, total 24 glycopeptides were identified and the detection limit was determined as 5 fmol. When the approach was applied to the analysis of glycopeptides in the mixture of bovine serum albumin and immunoglobulin G (100:1, m/m) digests, 16 glycopeptides could still be observed. Moreover, the monolith was successfully applied to the selective enrichment of glycopeptides from human serum digests, exhibiting great practicability in identifying low‐abundance glycopeptides in complex biological samples.  相似文献   

8.
A chiral capillary monolithic column for enantiomer separation in capillary electrochromatography was prepared by coating cellulose tris(3,5‐dimethylphenylcarbamate) on porous glycidyl methacrylate‐co‐ethylene dimethacrylate monolith in capillary format grafted with chains of [2(methacryloyloxy)ethyl] trimethylammonium chloride. The surface modification of the monolith by the photografting of [2(methacryloyloxy)ethyl] trimethylammonium chloride monomer as well as the coating conditions of cellulose tris(3,5‐dimethylphenylcarbamate) onto the grafted monolithic scaffold were optimized to obtain a stable and reproducible chiral stationary phase for capillary electrochromatography. The effect of organic modifier (acetonitrile) in aqueous mobile phase for the enantiomer separation by capillary electrochromatography was also investigated. Several pairs of enantiomers including acidic, neutral, and basic analytes were tested and most of them were partially or completely resolved under aqueous mobile phases. The prepared monolithic chiral stationary phases exhibited a good stability, repeatability, and column‐to‐column reproducibility, with relative standard deviations below 11% in the studied electrochromatographic parameters.  相似文献   

9.
A novel monolithic stationary phase with mixed mode of hydrophilic and strong anion exchange (SAX) interactions based on in situ copolymerization of pentaerythritol triacrylate (PETA), N,N‐dimethyl‐N‐methacryloxyethyl N‐(3‐sulfopropyl) ammonium betaine (DMMSA) and a selected quaternary amine acrylic monomer was designed as a multifunctional separation column for CEC. Although the zwitterionic functionalities of DMMSA and hydroxy groups of PETA on the surface of the monolithic stationary phase functioned as the hydrophilic interaction (HI) sites, the quaternary amine acrylic monomer was introduced to control the magnitude of the EOF and provide the SAX sites at the same time. Three different quaternary amine acrylic monomers were tested to achieve maximum EOF velocity and highest plate count. The fabrication of the zwitterionic monolith (designated as HI and SAX stationary phase) was carried out when [2‐(acryloyloxy)ethyl]trimethylammonium methylsulfate was used as the quaternary amine acrylic monomer. The separation mechanism of the monolithic column was discussed in detail. For charged analytes, a mixed mode of HI and SAX was observed by studying the influence of mobile phase pH and salt concentration on their retentions on the poly(PETA‐co‐DMMSA‐co‐[2‐(acryloyloxy)ethyl]trimethylammonium methylsulfate) monolithic column. The optimized monolith showed good separation performance for a range of polar analytes including nucleotides, nucleic acid bases and nucleosides, phenols, estrogens and small peptides. The column efficiencies greater than 192 000 theoretical plates/m for estriol and 135 000 theoretical plates/m for charged cytidine were obtained.  相似文献   

10.
Macroporous cross‐linked organic polymer based on N‐acryloxysuccinimide (NAS) and ethylene dimethacrylate (EDMA) was prepared inside 75 µm id fused silica capillary as a functionalizable monolithic stationary phase for chromatographic applications. Succinimide groups on the monolith surface provide reactive sites able to react readily through standard electrophile–nucleophile chemistry. Propargylamine was used to prepare alkyne functionalized poly(NAS‐co‐EDMA). Onto this azido‐reactive polymer surface was grafted β‐cyclodextrin (CD) via a triazole ring utilizing the copper(I)‐catalyzed 1,3‐dipolar cyclo‐addition reaction. Chemical characterization was performed in situ after each synthetic step by means of Raman spectroscopy. Good enantioseparations of flavanone enantiomers, chosen as test chiral compound, were achieved under reversed phase conditions by both capillary electrochromatography and nano‐liquid chromatography (nano‐LC) techniques. These results demonstrate the potentiality and usefulness of click chemistry in the preparation of β‐CD containing chiral organic polymer monolith.

  相似文献   


11.
A poly(glycidyl methacrylate-co-acrylamide-co-ethylene dimethacrylate) monolith and a poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith were prepared in fused silica capillaries (100 μm ID) and modified with monomeric avidin using the glutaraldehyde technique. The biotin binding capacity of monolithic affinity columns with immobilized monomeric avidin (MACMAs) was determined by fluorescence spectroscopy using biotin (5-fluorescein) conjugate, as well as biotin- and fluorescein-labeled bovine serum albumin (BSA). The affinity columns were able to bind 16.4 and 3.7 μmol biotin/mL, respectively. Columns prepared using the poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith retained 7.1 mg BSA/mL, almost six times more than commercially available monomeric avidin beads. Protocols based on MALDI-TOF mass spectrometry monitoring were optimized for the enrichment of biotinylated proteins and peptides. A comparison of enrichment efficiencies between MACMAs and commercially available monomeric avidin beads yielded superior results for our novel monolithic affinity columns. However, the affinity medium presented in this work suffers from a significant degree of nonspecific binding, which might hamper the analysis of more complex mixtures. Further modifications of the monolith’s surface are envisaged for the future development of monoliths with improved enrichment characteristics.  相似文献   

12.
A simple approach to fabricate hybrid monolithic column within the confines of fused-silica capillaries (75 μm i.d.) was introduced. A polyhedral oligomeric silsesquioxanes (POSS) reagent containing a methacrylate group was selected as functional monomer, and copolymerized with bisphenol A dimethacrylate (BPADMA) or ethylene dimethacrylate (EDMA) in the presence of porogenic solvents via thermally initiated free radical polymerization. After optimization of the preparation conditions, two POSS-containing hybrid monoliths were successfully prepared and exhibited good permeability and stability. By comparison of the separation efficiencies of the resulting poly(POSS-co-BPADMA) and poly(POSS-co-EDMA) monoliths in capillary electrochromatography (CEC) and capillary liquid chromatography (cLC), it was indicated the former has better column efficiencies for alkylbenzenes, phenols, anilines and PAHs in CEC and cLC than the latter. Particularly, the hybrid poly(POSS-co-BPADMA) monolith is more suitable for separation of PAHs due to π–π interaction between the analytes and aromatic rings in the surface of monolithic stationary phase.  相似文献   

13.
In our current work, we describe how open tubular‐immobilized metal‐ion affinity chromatography (OT‐IMAC) capillary columns connected to a solid phase microextraction (in‐tube SPME) device can be used for the enrichment of phosphopeptides. A phosphonate modified silica nanoparticle (NP)‐deposited capillary was prepared by liquid phase deposition (LPD), and used for the immobilization of Fe3+, Zr4+ or Ti4+. The enrichment capacities of three different OT‐IMAC capillary columns were compared by using tryptically digested α‐casein as sample. The improved extraction efficiency in our technique was demonstrated by comparing to a directly modified capillary, and a comparison of phosphopeptide extraction from simple and complex samples was tested for both modes. Our results show that the NP‐IMAC‐Zr4+ capillary column can be used to selectively isolate phosphopeptides from real samples, and can enrich for β‐casein phosphopeptides from concentrations as low as 1.7×10?9 M.  相似文献   

14.
A zirconium terephthalate metal‐organic framework‐incorporated poly(N‐vinylcarbazole‐co‐divinylbenzene) monolith was fabricated in a capillary by a thermal polymerization method. The optimized monolith had a homogeneous structure, good permeability, and stability. The monolith could be used for the effective enrichment of fungicides through π‐π interactions, electrostatic forces, and hydrogen bonds. The potential factors that affect the extraction efficiency, including ionic strength, solution pH, sample volume, and eluent volume, were investigated in detail. The monolith‐based in‐tube solid‐phase microextraction coupled with ultra‐high‐performance liquid chromatography and high‐resolution Orbitrap mass spectrometry was performed for the analysis of five fungicides (pyrimethanil, tebuconazole, hexaconazole, diniconazole, and flutriafol) in environmental samples. Under the optimized conditions, the linear ranges were 0.005–5 ng/mL for pyrimethanil, 0.01–5 ng/mL for flutriafol, and 0.05–5 ng/mL for other fungicides, respectively, with coefficients of determination ≥0.9911. The limits of detection were 1.34–14.8 ng/L. The columns showed good repeatability (relative standard deviations ≤9.3%, n = 5) and desirable column‐to‐column reproducibility (relative standard deviations 5.3–9.4%, n = 5). The proposed method was successfully applied for the simultaneous detection of five fungicides in water and soil samples, with recoveries of 90.4–97.5 and 84.0–95.3%, respectively.  相似文献   

15.
Three monomers, octakis (3‐mercaptopropyl) octasilsesquioxane, 1,2,4‐trivinylcyclohexane and isophytol were employed to synthesize a novel monolithic stationary phase via photo‐initiated thiol‐ene click polymerization for reversed‐phase liquid chromatography. Several factors such as porogenic system, reaction time and the molar ratio of functional groups were investigated in detail. The resulting poly(POSS‐co‐TVCH‐co‐isophytol) monolithic column exhibited suitable permeability for fast separation and outstanding thermal stability. Five alkylbenzenes were employed to evaluate the ability of chromatographic separation of the resulting monolithic columns at different flow rates, and showed the highest column efficiencies of 90,200–93,100 N/m (corresponding to 10.4–10.6 μm of plate height) at a velocity of 0.41 mm/s. The baseline separations of five anilines and eight phenols further proved the applicability of poly(POSS‐co‐TVCH‐co‐isophytol) monolithic column in the separation of small molecules.  相似文献   

16.
To further evaluate the feasibility and applicability of the one‐pot strategy in monolithic column preparation, two novel β‐cyclodextrin‐functionalized organic polymeric monoliths were prepared using two β‐cyclodextrin derivatives, i.e. mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin and heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin. In this improved method, mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin or heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin reacted with glycidyl methacrylate to generate the corresponding functional monomers and were subsequently copolymerized with ethylene dimethacrylate. The polymerization conditions for both monoliths were carefully optimized to obtain satisfactory column performance with respect to column efficiency, reproducibility, permeability, and stability. The obtained poly(glycidyl methacrylate‐mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) and poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monoliths exhibited a uniform structure, good permeability, and mechanical stability as indicated by scanning electron microscopy and micro‐high‐performance liquid chromatography experimental results. Because of the probable existence of multi‐glycidyl methacrylate linking spacers on the poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monolith, the effect of the ratio of glycidyl methacrylate/heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin was especially studied, and satisfactory reproducibility could still be achieved by strictly controlling the composition of the polymerization mixture. To investigate the effect of the degree of amino substitution of β‐cyclodextrin on column performance, a detailed comparison of the two monoliths was also carried out using series of analytes including small peptides and chiral acids. It was found that the β‐cyclodextrin‐functionalized monolith with mono‐glycidyl methacrylate linking spacers demonstrated better chiral separation performance than that with multi‐glycidyl methacrylate linking spacers.  相似文献   

17.
A new kind of monolithic capillary electrochromatography column with poly(styrene‐co‐divinylbenzene‐co‐methacrylic acid) as the stationary phase has been developed. The stationary phase was found to be porous by scanning electron microscopy and the composition of the continuous bed was proved by IR spectroscopy to be the ternary polymer of styrene, divinylbenzene, and methacrylic acid. The effects of operating parameters, such as voltage, electrolyte, and organic modifier concentration in the mobile phase on electroosmotic flow were studied systematically. The retention mechanism of neutral solutes on such a column proved to be similar to that of reversed‐phase high performance liquid chromatography. In addition, fast analyses of phenols, chlorobenzenes, anilines, isomeric compounds of phenylenediamine and alkylbenzenes within 4.5 min were achieved.  相似文献   

18.
Vinyl ester‐based monoliths are proposed as a new group of stationary phase for CEC. The capillary monolithic columns were prepared by using two vinyl ester monomers, vinyl pivalate (VPV), and vinyl decanoate (VDC) by using ethylene dimethacrylate (EDMA) as the cross‐linking agent, and 2‐acrylamido‐2‐methylpropane sulfonic acid as the charge‐bearing monomer. The monoliths with different pore structures and permeabilities were obtained by varying the type and composition of the porogen mixture containing isoamyl alcohol and 1,4‐butanediol. The electrochromatographic separation of alkylbenzenes was successfully performed by using an acetonitrile/aqueous buffer system as the mobile phase in a CEC system. Vinyl ester monoliths with short alkyl chain length (i.e. poly(VPV‐co‐EDMA) exhibited better separation performance compared with the monolith with long alkyl chain length (i.e. poly(VDC‐co‐EDMA). In the case of VPV‐based monoliths, the theoretical plate numbers higher than 250 000 plates/m were achieved by using a porogen mixture containing 33% v/v of isoamyl alcohol. For both VDC and VPV‐based monoliths, the column efficiency was almost independent of the superficial velocity in the range of 2–12 cm/min.  相似文献   

19.
A novel strategy was successfully developed for screening trypsin inhibitors in traditional Chinese medicines based on monolithic capillary immobilized enzyme reactors combined with liquid chromatography‐tandem mass spectrometry. Organic polymer based monolithic enzyme reactors were firstly prepared by covalently bonding trypsin to a poly(glycidyl methacrylate‐co‐poly (ethylene glycol) diacrylate) monolith by the ring‐opening reaction of epoxy groups. The activity and kinetic parameters of the obtained monolithic trypsin reactors were systematically evaluated using micro‐liquid chromatography. Fourier transform infrared spectroscopy and scanning electron microscopy were also used to characterize the monolithic trypsin reactors. The resulting functional and denatured monolithic trypsin reactors were applied as affinity solid‐phase extraction columns, and offline coupled with a liquid chromatography‐tandem mass spectrometry system to construct a binding affinity screening platform. Subsequently, the proposed platform was applied for screening trypsin binders in a Scutellaria baicalensis Georgi extract. Three compounds, namely scutellarin, baicalin, and wogonoside were identified, and their inhibitory activities were further confirmed via an in vitro enzymatic inhibition assay. Additionally, molecular docking was also performed to study the interactions between trypsin and these three compounds.  相似文献   

20.
A sensitive microextraction method based on a new poly(methacrylic acid‐ethylene glycol dimethacrylate‐N‐vinylcarbazole) monolithic capillary column, coupled with gas chromatography and electron capture detection, was established for the determination of three benzodiazepines (estazolam, alprazolam, and triazolam) in urine and beer samples. Owing to the abundant π electrons and polar surface of N‐vinylcarbazole, N‐vinylcarbazole‐incorporated monolith showed a higher extraction performance than neat poly(methacrylic acid‐ethylene glycol dimethacrylate) because of the enhanced π–π stacking interactions derived from the π‐electron‐rich benzene groups from N‐vinylcarbazole. The monolith exhibited a homogeneous and continuous structure, good permeability, and a long lifetime. Factors affecting the extraction such as solution pH, salt concentration, sample volume, desorption solvent, and desorption volume were investigated. Under the optimized conditions, limits of detection of 0.011–0.026 ng/mL were obtained. The one‐column and column‐to‐column precision values were ≤7.2 and ≤9.8%, respectively. The real samples were first diluted with deionized water and then treated by the monolith microextraction before gas chromatography analysis. The recoveries were 81.4–93.3 and 83.3–94.7% for the spiked samples, with relative standard deviations of 4.1–8.1 and 3.8–8.5%, respectively. This method provides an accurate, simple, and sensitive detection platform for drug analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号