首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, sensitive and reproducible ultra‐performance liquid chromatography–tandem mass spectrometry method has been developed for the simultaneous determination of atenolol, a β‐adrenergic receptor‐blocker and chlorthalidone, a monosulfonamyl diuretic in human plasma, using atenolol‐d7 and chlorthalidone‐d4 as the internal standards (ISs). Following solid‐phase extraction on Phenomenex Strata‐X cartridges using 100 μL human plasma sample, the analytes and ISs were separated on an Acquity UPLC BEH C18 (50 mm × 2.1 mm, 1.7 µm) column using a mobile phase consisting of 0.1% formic acid–acetonitrile (25:75, v/v). A tandem mass spectrometer equipped with electrospray ionization was used as a detector in the positive ionization mode for both analytes. The linear concentration range was established as 0.50–500 ng/mL for atenolol and 0.25–150 ng/mL for chlorthalidone. Extraction recoveries were within 95–103% and ion suppression/enhancement, expressed as IS‐normalized matrix factors, ranged from 0.95 to 1.06 for both the analytes. Intra‐batch and inter‐batch precision (CV) and accuracy values were 2.37–5.91 and 96.1–103.2%, respectively. Stability of analytes in plasma was evaluated under different conditions, such as bench‐top, freeze–thaw, dry and wet extract and long‐term. The developed method was superior to the existing methods for the simultaneous determination of atenolol and chlorthalidone in human plasma with respect to the sensitivity, chromatographic analysis time and plasma volume for processing. Further, it was successfully applied to support a bioequivalence study of 50 mg atenolol + 12.5 mg chlorthalidone in 28 healthy Indian subjects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A specific, sensitive and rapid method based on high performance liquid chromatography coupled to tandem mass spectrometry (HPLC‐MS/MS) was developed for the determination of pseudo‐ginsenoside GQ in human plasma. Liquid–liquid extraction was used to isolate the analyte from biological matrix followed by injection of the extracts onto a C8 column with isocratic elution. Detection was carried out on a triple quadrupole tandem mass spectrometer (API‐4000 system) in multiple reaction monitoring mode using negative electrospray ionization. The mobile phase consisted of methanol–10 mm ammonium acetate (90:10, v/v) and the flow rate was 0.3 mL/min. The method was validated over the concentration range of 5.0–5000.0 ng/mL for plasma. Inter‐ and intra‐day precisions (relative standard deviation) were all within 15% and the accuracy (relative error) was ≤9.4%. The lower limit of quantitation was 5.0 ng/mL. The pseudo‐ginsenoside GQ was stable after 8 h at room temperature, 24 h at autosampler and three freeze–thaw cycles (from ?30 to 25 °C). The method was successfully applied to the pharmacokinetic study of pseudo‐ginsenoside GQ in healthy Chinese volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid and highly sensitive method by LC‐MS/MS was developed and validated for the quantification of an antimalarial candidate (LAFIS10) in rat plasma using dexamethasone as internal standard (IS). The chromatographic separation was performed with a Poroshell 120 EC‐C18 column. The mobile phase consisted of water (A) and acetonitrile (B), both containing 10 m m of ammonium formate and 0.1% formic acid, delivered in the form of elution gradient. The LAFIS10 was monitored using an electrospray ionization interface operating in the positive mode in multiple reaction monitoring mode, monitoring the transitions 681.47 → 538.2 for LAFIS10 and 393.20 → 355.30 for the IS. The flow rate was 500 μL/min. The column temperature was kept at 40 °C and the injection volume was 2 μL. The lower limit of quantification was of 10 ng/mL and linearity between 10 and 1000 ng/mL was observed, with an R2 > 0.99. The accuracy of the method was >90%. The relative standard deviations intra‐ and interday were <8.80 and <6.37%, respectively. The method showed sensitivity, linearity, precision, accuracy and selectivity required to quantify LAFIS 10 in preclinical pharmacokinetic studies according to criteria established by the US Food and Drug Administration and European Medicines Agency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A selective and sensitive UHPLC‐MS/MS bioanalytical method to determine PT‐31, an analgesic drug candidate, in rat plasma was developed and validated. Analyses were performed using a UHPLC‐MS/MS system equipped with an electrospray ionization interface operating in the positive ionization mode using a C18 reversed‐phase column with a mobile phase of water:acetonitrile (68:31, v/v) containing 0.1% acetic acid eluting in a gradient mode with a flow rate of 0.3 mL/min. Plasma samples were deproteinized with cold acetonitrile containing 0.01% TFA (1:2, v/v) and 50 μL of the supernatant were injected into the system. PT‐31 and phenytoin (internal standard) retention times were roughly 1.0 and 1.5 min, respectively. Linear standard curves were plotted for the 0.01–10 µg/mL concentration range, with a coefficient of determination > 0.99. The method's precision was over 88%. Maximum intra‐ and inter‐day relative standard deviations were 14.6% and 11.6%, respectively. Interfering substances were not detected in the chromatogram, indicating that the method was specific. PT‐31 stability was assessed under different temperature and storage settings. The method was used to characterize PT‐31 plasma pharmacokinetics following administration of 5 mg/kg i.v. to Wistar rats. Therefore, the method described is sensitive, linear, precise and specific enough to determine PT‐31 in preclinical pharmacokinetic investigations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The aim of study was to develop a suitable analytical method for simultaneous estimation of levodopa, carbidopa and 3‐O‐methyl dopa in rat plasma. Chromatographic separation of plasma samples was achieved using a reverse‐phase C18 column. The mobile phase used consisted of a mixture of methanol and phosphate buffer (10 mM , pH 3.50) in the ratio of 90:10 v/v. All analytes were estimated by electrochemical detection at +800 mV. The developed method has been validated as per the standard guidelines. Precision study results were found to be satisfactory, with percentage relative standard deviation for repeatability and intermediate precision <3.96 and 6.56%, respectively, for all analytes detected in rat plasma. The developed method in rat plasma was found to be simple, rapid, accurate, precise and specific. The proposed method has been successfully applied for analysis of rat plasma samples obtained during an oral pharmacokinetic study of sustained release pellets of levodopa and carbidopa in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A simple and high sensitive ultra‐high‐performance liquid chromatography tandem mass spectrometry method for the determination of fludrocortisone in human plasma was developed and validated as per guidelines. The analyte and internal standard (IS), fludrocortisone‐d5, were extracted from human plasma via liquid–liquid extraction using tert‐butyl methyl ether. The chromatographic separation was achieved on a Chromolith RP18e column using a mixture of acetonitrile and 2 mm ammonium formate (70:30, v/v) as the mobile phase at a flow rate of 0.7 mL/min. Quantitation was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique, operating in multiple reaction monitoring and positive ion mode. The precursors to product ion transitions monitored for fludrocortisone and IS were m/z 381.2 → 343.2 and 386.2 → 348.4, respectively. The assay was validated with linear range of 40–3000 pg/mL. The intra‐ and inter‐day precisions (relative standard deviation) were within 0.49–7.13 and 0.83–5.87%, respectively. The proposed method was successfully applied to pharmacokinetic studies in humans. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The antipsychotics risperidone, aripiprazole and pipamperone are frequently prescribed for the treatment in children with autism. The aim of this study was to validate an ultra‐high performance liquid chromatography–mass spectrometry method for the quantification of these antipsychotics in plasma. An ultra‐high performance liquid chromatography–mass spectrometry assay was developed for the determination of the drugs and metabolites. Gradient elution was performed on a reversed‐phase column with a mobile phase consisting of ammonium acetate, formic acid in methanol or in Milli‐Q ultrapure water at a flow rate of 0.5 mL/min. The method was validated according to the US Food and Drug Administration guidelines. The analytes were found to be stable enough after reconstitution and injection of only 5 μL improved the accuracy and precision in combination with the internal standard. Calibration curves of all five analytes were linear. All analytes were stable for at least 72 h in the autosampler and the high quality control of 9‐OH‐risperidone was stable for 48 h. The method allows quantification of all analytes. The advantage of this method is the combination of a minimal injection volume, a short run‐time, an easy sample preparation method and the ability to quantify all analytes in one run. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Sildenafil is used to treat pulmonary hypertension in neonatal and pediatric patients. Pharmacokinetic studies in these patients are complicated by the limited sample volume. We present the validation results of an assay method to quantitate sildenafil and desmethylsildenafil simultaneously in 50 µL of plasma. Deuterated sildenafil was used as an internal standard. After liquid–liquid extraction, analytes were separated on an ultra‐performance liquid chromatography (UPLC)‐column and quantified via tandem mass spectrometry. The calibration range was linear, with acceptable accuracy and a precision of <15% for both compounds. The lower limits of quantification were 1 ng/mL. Matrix effects were present, but inter‐plasma batch variability was under 12%. The method was successfully applied to samples from a pharmacokinetic study into sildenafil pharmacokinetics in neonates, making maximum use of the limited number and amount of plasma samples available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Benznidazole (BNZ) and nifurtimox are the only drugs available for treating Chagas disease. In this work, we validated a bioanalytical method for the quantification of BNZ in plasma aimed at improving sensitivity and time of analysis compared with the assays already published. Furthermore, we demonstrated the application of the method in a preclinical pharmacokinetic study after administration of a single oral dose of BNZ in Wistar rats. A Waters® Acquity UHPLC system equipped with a UV–vis detector was employed. The method was established using an Acquity® UHPLC HSS SB C18 protected by an Acquity® UHPLC HSS SB C18 VanGuard guard column and detection at 324 nm. The mobile phase consisted of ultrapure water–acetonitrile (65:35), and elution was isocratic. The mobile phase flow rate was 0.55 mL/min, the volume of injection was 1 μL, and the run time was just 2 min. The samples were kept at 25°C until injection and the column at 45°C for the chromatographic separation. The sample preparation was performed by a rapid protein precipitation with acetonitrile. The linear concentration range was 0.15–20 µg/mL. The pharmacokinetic parameters of BNZ in rats were determined and the method was considered sensitive, fast and suitable for application in pharmacokinetic studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Copen is a derivative obtained from the structural modification of osthole, which inhibits tumoral proliferation in many tumor cell lines. A rapid and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was established for the quantification of copen in rat plasma. After a simple sample preparation procedure by one‐step protein precipitation with methanol, copen and bicalutamide (internal standard, IS) were chromatographed on a Zorbax SB‐C18 (4.6×100 mm, 1.8 µm) column with a mobile phase consisting of methanol–5 mm ammonium formate water with 0.1% formic acid (80:20, v/v). MS detection was performed on a triple quadrupole tandem mass spectrometer in the multiple reaction monitoring mode with a positive eletrospray ionization source. The assay was validated in the concentration range of 51.58–20630 ng/mL, with a limit of quantitation (LOQ) of 51.58 ng/mL. The intra‐ and inter‐day precisions (relative standard deviation) were ≤3.21 and ≤11.3%, respectively, with accuracy (%) in the range of 94.66–102.1%. The method was fully validated in a study of the pharmacokinetics of copen (25 mg/kg) after intragastric administration in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Levofloxacin, pefloxacin, ciprofloxacin and moxifloxacin are four fluoroquinolones used in the treatment of serious bacterial infections. The antibacterial activity of fluoroquinolones is concentration dependent. Therefore, therapeutic drug monitoring in daily clinical practice is warranted to ensure the therapy's efficacy and prevent bacterial resistance. The purpose of the present study was to develop a method using high‐pressure liquid chromatography with an ultraviolet detector for simultaneous quantification of these four fluoroquinolones in human plasma. A 50 μL aliquot of plasma was precipitated by 200 μL of methanol using gatifloxacin as internal standard. The chromatographic separation was performed on a Kinetex XB‐C18 column using a mobile phase composed of a mixture of orthophosphoric acid 0.4% (v/v), acetonitrile and methanol at a flow rate of 1.2 mL/min. Dual UV wavelength mode was used, with levofloxacin and moxifloxacin monitored at 293 nm, and pefloxacin and ciprofloxacin monitored at 280 nm. The calibration was linear over the ranges of 0.125–25 mg/L for levofloxacin, 0.1–20mg/L for moxifloxacin and 0.05‐10 mg/L for both pefloxacin and ciprofloxacin. Inter‐ and intra‐day trueness and precision were <13% for all the compounds under study. The proposed method was simple, reliable, cost‐effective and suitable for therapeutic drug monitoring or pharmacokinetics studies.  相似文献   

12.
A simple, sensitive and rapid LC‐MS/MS‐ESI method has been developed and validated for simultaneous quantification of the carisoprodol and aspirin in human plasma. Carisoprodol was detected in positive ion mode, whereas aspirin was detected in negative ion mode. Carbamazepine and furosemide were used as internal standards (IS) for quantification of carisoprodol and aspirin, respectively. The extraction procedure involves a liquid–liquid extraction method with ter‐butyl methyl ether. Chromatographic separation was achieved on a Zorbax XDB‐Phenyl (4.6 × 75 mm, 3.5 µm) column using an isocratic mobile phase (5 mm ammonium acetate:methanol, 20:80, v/v) at a flow rate of 0.8 mL/min with a total run time of 2.2 min. A detailed method validation was performed as per the FDA guidelines. The standard curves found to be linear in the range of 25.5–4900 and 15.3–3000 ng/mL for carisoprodol and aspirin, respectively. The results met the acceptance criteria. Carisoprodol and aspirin were found to be stable in various stability studies. The validated method was successfully applied to a pharmacokinetic study following co‐administration of carisoprodol (250 mg) and aspirin (75 mg) tablets by oral route to human volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A rapid, simple and sensitive LC–MS/MS method was established and validated for simultaneous quantification of ticagrelor and its active metabolite AR‐C124910XX in human plasma. After plasma samples were deproteinized with acetonitrile, the post‐treatment samples were chromatographed on a Dikma C18 column interfaced with a triple quadrupole tandem mass spectrometer. Electrospray negative ionization mode and multiple reaction monitoring were adopted to assay ticagrelor and AR‐C124910XX. Acetonitrile and 5 mΜ ammonium acetate was used as the mobile phase with a gradient elution at a flow rate of 0.5 mL/min. The method was linear in the range of 0.781–800 ng/mL for both ticagrelor and AR‐C124910XX with a correlation coefficient ≥0.994. The intra‐ and inter‐day precisions were within 12.61% in terms of relative standard deviation and the accuracy was within ±7.88% in terms of relative error. The LC–MS/MS method was fully validated for its sensitivity, selectivity, stability, matrix effect and recovery. This convenient and specific LC–MS/MS method was successfully applied to the pharmacokinetic study of ticagrelor and AR‐C124910XX in healthy volunteers after an oral dose of 90 mg ticagrelor.  相似文献   

14.
Lychnopholide is a sesquiterpene lactone usually obtained from Lychnophora and Eremanthus species and has pharmacological activities that include anti‐inflammatory and anti‐tumor. Lychnopholide isolated from Eremanthus matogrossenssis was analyzed in this study. The aims of this study were to develop and validate an analytical methodology by LC‐MS/MS and to quantify lychnopholide in rat plasma. Chromatographic separation was achieved on a C18 column using isocratic elution with the mobile phase consisting of methanol and water (containing 0.1% formic acid) at a flow rate of 0.4 mL/min. The detection was performed in multiple‐reaction monitoring mode using electrospray ionization in positive mode. The method validation was performed in accordance with regulatory guidelines and the results met the acceptance criteria. The linear range of detection was 10–200 ng/mL (r > 0.9961). The intra‐ and inter‐day assay variability were <6.2 and <11.7%, respectively. The extraction recovery was approximately 63% using liquid–liquid extraction with chloroform. Lychnopholide was detected in plasma up to 60 min after intravenous administration in rats. This rapid and sensitive method for the analysis of the sesquiterpene lactone lychnopholide in rat plasma can be applied to pharmacokinetic studies of this compound. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A rapid, selective and sensitive ultra‐high‐performance liquid chromatography–tandem mass spectrometry method was developed to simultaneously determine oxybutynin and its active metabolite N‐desethyl oxybutynin in rat plasma. A 0.1 mL sample of plasma was extracted with n‐hexane. Chromatographic separation was performed on a UPLC BEH C18 column (2.1 × 100 mm i.d.,1.7 μm) with mobile phase of methanol–water (containing 2 mmol/L ammonium acetate and 0.1% formic acid; 90:10, v/v). The detection was performed in positive selected reaction monitoring mode. Each plasma sample was chromatographed within 3 min. The linear calibration curves were obtained in the concentration range of 0.0944–189 ng/mL (r ≥ 0.99) for oxybutynin and 0.226–18.0 ng/mL (r ≥ 0.99) for N‐desethyl oxybutynin. The intra‐ and inter‐day precision (relative standard deviation) values were not more than 14% and the accuracy (relative error) was within ±7.6%. The method described was superior to previous methods for the quantitation of oxybutynin with three product ions and was successfully applied to a pharmacokinetic study of oxybutynin and its active metabolite N‐desethyl oxybutynin in rat plasma after transdermal administration.  相似文献   

16.
A selective, sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed and validated to determine metformin and glipizide simultaneously in human plasma using phenacetin as internal standard (IS). After one‐step protein precipitation of 200 μL plasma with methanol, metformin, glipizide and IS were separated on a Kromasil Phenyl column (4.6 × 150 mm, 5 µm) at 40°C with an isocratic mobile phase consisting of methanol–10 mmol/L ammonium acetate (75:25, v/v) at a flow rate of 0.35 mL/min. Electrospray ionization source was applied and operated in the positive mode. Multiple reaction monitoring using the precursor → product ion combinations of m/z 130 → m/z 71, m/z 446 → m/z 321 and m/z 180 → m/z 110 were used to quantify metformin, glipizide and IS, respectively. The linear calibration curves were obtained over the concentration ranges 4.10–656 ng/mL for metformin and 2.55–408 ng/mL for glipizide. The relative standard deviation of intra‐day and inter‐day precision was below 10% and the relative error of accuracy was between ?7.0 and 4.6%. The presented HPLC‐MS/MS method was proved to be suitable for the pharmacokinetic study of metformin hydrochloride and glipizide tablets in healthy volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
CEP‐18770, [(1R)‐1‐{[(2S,3R)‐3‐hydroxy‐2‐{[(6‐phenyl‐2‐pyridinyl)carbonyl]amino}butanoyl]amino}‐3‐methylbutyl]boronic acid, is a novel proteasome inhibitor, now under early clinical evaluation as an anticancer agent. To investigate its clinical pharmacokinetics, a high‐performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method was developed and validated to measure the drug in human plasma, based on simple protein precipitation with acetonitrile after the addition of irbesartan as internal standard. The method requires a small volume of sample (100 µl) and is rapid and selective, allowing good resolution of peaks in 5 min. It is sensitive, precise and accurate, with overall precision, expressed as coefficient of variation (CV%), always < 10.0%, accuracy in the range 93.8–107.7% and high recovery, close to 100%. The limit of detection is 0.01 ng/ml and the lower limit of quantitation (LLOQ) is 0.20 ng/ml. The assay was validated in the range from the LLOQ up to 50.00 ng/ml. This is the first method developed and validated for analyzing a proteasome inhibitor with a boronic‐acid‐based structure in human plasma. The method was successfully applied to study the pharmacokinetics of CEP‐18770 in cancer patients with solid tumors or multiple myeloma who had received the drug as a short intravenous bolus during the initial Phase I trial. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A simple and sensitive bioanalytical method was developed and validated for determination of etoposide in plasma and microdialysis samples of Walker‐256 tumor‐bearing rats. A microdialysis probe was implanted in the center of a subcutaneous tumor and Ringer's solution was used as perfusion medium. Chromatographic separation was conducted on a Shimadzu CLC‐C8 column using a mobile phase consisting of water–acetonitrile (70:30; v/v) adjusted to pH 4.0 ± 0.1 with formic acid at a gradient flow rate of 1.0–0.6 mL/min, an injection volume of 30 μL and UV detection at 210 nm. Microdialysate samples were analyzed without processing and plasma samples (100 μL) were spiked with phenytoin as internal standard (IS) (1 µg/mL) followed by extraction with tert‐butyl methyl ether. The organic layer was evaporated and reconstituted with 100 μL of mobile phase before injection. The methods for plasma and microdialysate were linear in the ranges of 25–10,000 ng/mL and of 10–1500 ng/mL, respectively. All the validation parameters such as intra‐ and inter‐day precision and accuracy and stability were within the limits established by international guidelines. The present method was successfully applied in the investigation of etoposide pharmacokinetics in rat plasma and microdialysate tumor samples following a single 15 mg/kg intravenous dose. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Toosendanin (TSN) is a major triterpenoid existing in Melia toosendan, which has been used as a digestive tract parasiticide and insecticide but with serious hepatotoxicity. An ultra‐performance liquid chromatography–electrospray ionization–mass spectrometry method was developed for determination of TSN in rat plasma. Plasma samples were separated on Acquity UPLCTM BEH C18 column with acetonitrile and water as flow phase by gradient elution and determined by quadrupole mass spectrometer in negative selective ion monitoring mode. Usolic acid was used as internal standard. The calibration curves were linear over 0.02–3.0 µg/mL for TSN with a lower limit of quantification (LLOQ) of 20 ng/mL in rat plasma. The extraction recoveries of TSN were within 74.3–80.7% with an accuracy of 94.5–108.9%. The intra‐ and inter‐day precision values of the assay at three quality control levels were 8.8–13.8% and <13.9% at LLOQ level, respectively. The method was successfully applied to a pharmacokinetic study of TSN in rats after a single intravenous and oral administration of 2 and 60 mg/kg. The shorter Tmax, higher Vd and Cl of TSN after oral administration indicated that TSN could be absorbed, distributed and eliminated quickly in rats in vivo. The absolute bioavailability of TSN after oral administration was 9.9%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号