首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compounds Li8EN2 with E = Se, Te were obtained in form of orange microcrystalline powders from reactions of Li2E with Li3N. Single crystal growth of Li8SeN2 additionally succeeded from excess lithium. The crystal structures were refined using single‐crystal X‐ray diffraction as well as X‐ray and neutron powder diffraction data (I41md, No. 109, Z = 4, Se: a = 7.048(1) Å, c = 9.995(1) Å, Te: a = 7.217(1) Å, c = 10.284(1) Å). Both compounds crystallize as isotypes with an anionic substructure motif known from cubic Laves phases and lithium distributed over four crystallographic sites in the void space of the anionic framework. Neutron powder diffraction pattern recorded in the temperature range from 3 K to 300 K and X‐ray diffraction patterns using synchrotron radiation taken from 300 K to 1000 K reveal the structural stability of both compounds in the studied temperature range until decomposition. Motional processes of lithium atoms in the title compounds were revealed by temperature dependent NMR spectroscopic investigations. Those are indicated by significant changes of the 7Li NMR signals. Lithium motion starts for Li8SeN2 above 150 K whereas it is already present in Li8TeN2 at this temperature. Quantum mechanical calculations of NMR spectroscopic parameters reveal clearly different environments of the lithium atoms determined by the electric field gradient, which are sensitive to the anisotropy of charge distribution at the nuclear sites. With respect to an increasing coordination number according to 2 + 1, 3, 3 + 1, and 4 for Li(3), Li(4), Li(2), and Li(1), respectively, the values of the electric field gradients decrease. Different environments of lithium predicted by quantum mechanical calculations are confirmed by 7Li NMR frequency sweep experiments at low temperatures.  相似文献   

2.
Ag6(VIVO)2(PO4)2(P2O7) was obtained by reaction of Ag3PO4 and (VO)2P2O7 (sealed ampoule, 550 °C, 3 d). The crystal structure of the new mixed ortho‐pyrophosphate was determined from X‐ray single‐crystal data [Pnma, Z = 4, a = 12.759(3) Å, b = 17.340(4) Å, c = 6.418(1) Å, R1 = 0.071, wR2 = 0.184 for 3174 unique reflections with Fo > 4σ(Fo), 141 variables]. Ag+ ions are located in between layers [(VIVO)2(PO4)2(P2O7)]6–. Equilibrium relations of the new phosphate to neighboring phases were determined. The electronic structure of the (VIV≡O)2+ group was investigated by polarized electronic absorption spectroscopy (ν̃1a = 9450 cm–1, ν̃1b = 9950 cm–1, ν̃2 = 14750 cm–1), EPR spectroscopy [X‐ and Q‐band, powder and single crystal, orthorhombic crystal g‐tensor with g1 = 1.9445(3), g2 = 1.9521(3), g3 = 1.9695(3)], and magnetic measurements (powder, μexp/μB = 1.71, Θp = –1.7 K).  相似文献   

3.
The new tetracyanamidoaluminate LiBa2[Al(CN2)4] was prepared by solid state metathesis reaction in a fused copper ampoule from a mixture of BaF2, AlF3, and Li2(CN2) at 550 °C. The crystal structure was solved and refined based on single‐crystal X‐ray diffraction data [P212121, Z = 4, a = 6.843(1) Å, b = 11.828(2) Å, c = 11.857(2) Å]. The compound belongs to the known formula type LiM2[Al(CN2)4] (M = Sr, Eu) containing the homoleptic [Al(CN2)4]5– ion. However, LiBa2[Al(CN2)4] forms a distinct crystal structure, containing a two‐dimensional [(NCN)2/2Li(NCN)2Al(NCN)2/2] network with four‐coordinate Li+ and Al3+ ions. Two crystallographically independent Ba2+ ions are situated in eightfold environment of terminal nitrogen atoms of cyanamide ions.  相似文献   

4.
The new compound LiCd2(SeO3)2(OH) has been hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction and IR spectroscopy. It is built up from a network of edge‐ and vertex‐sharing pyramidal [SeO3]2— groups, distorted CdO6 octahedra, and CdO7 monocapped trigonal prisms. The cadmium‐centred groups form infinite columns, onto which Se atoms (as [SeO3]2— groups) are grafted. Cross‐linking between the columns results in a three‐dimensional framework which encapsulates [100] channels occupied by the tetrahedrally‐coordinated lithium cations. The H atom of the hydroxyl group appears to participate in a weak, bifurcated, hydrogen bond. Crystal data: LiCd2(SeO3)2(OH), Mr = 502.67, monoclinic, P21/c (No. 14), a = 5.8184 (3)Å, b = 10.2790 (5)Å, c = 11.5021 (5)Å, β = 90.446(1)°, V = 687.89 (9)Å3, Z = 4, R(F) = 0.021, wR(F2) = 0.046.  相似文献   

5.
Two modifications of (TeO)(HAsO4) were obtained by reacting tellurium dioxide with arsenic acid under boiling conditions (modification I, acid concentration 80 wt‐%) or under hydrothermal conditions (modification II, acid concentration 50 wt‐%). The crystal structures of the two modifications were determined from single‐crystal X‐ray data [modification I: P21/c, Z = 4, a = 7.4076(10), b = 5.9596(7), c = 9.5523(11) Å, β = 102.589(8)°, 2893 structure factors, 68 parameters, R[F2 > 2σ(F2)] = 0.0247, wR2(F2 all) = 0.0530; modification II: P21/c, Z = 4, a = 6.2962(4), b = 4.7041(3), c = 13.9446(8) Å, β = 94.528(3)°, 2549 structure factors, 69 parameters, R[F2 > 2σ(F2)] = 0.0207, wR2(F2 all) = 0.0462)]. Dehydration of (TeO)(HAsO4)‐II at temperatures above 260 °C results in the formation of polycrystalline (Te3O3)(AsO4)2. Single crystals of the anhydrous product were grown either by heating stoichiometric amounts of the binary oxides TeO2 and As2O5 in closed silica glass ampoules or with higher concentrated arsenic acid (80 wt‐%) under hydrothermal conditions at 220 °C. The common features in the crystal structures of (Te3O3)(AsO4)2 [P$\bar{1}$ , Z = 4, a = 6.5548(4), b = 7.6281(6), c = 15.0464(15) Å, α = 140.212(6), β = 102.418(9)°, γ = 77.346(5)°, 5718 structure factors, 146 parameters, R[F2 > 2σ(F2)] = 0.0351, wR2(F2 all) = 0. 1093] and in that of the two modifications of acidic (TeO)(HAsO4) are [TeO5] square‐pyramids and [AsO4] tetrahedra. In anhydrous (Te3O3)(AsO4)2 and in (TeO)(HAsO4)‐II, a layered arrangement of the building units is found, whereas in the (TeO)(HAsO4)‐I structure strands are formed. Different hydrogen bonding interactions are present in the two modifications of (TeO)(HAsO4).  相似文献   

6.
Li2CuII5(PO4)4 has been obtained by various reactions starting from copper or Cu2O. Crystallization was achieved using I2 as oxidant and mineralizer. The new orthophosphate crystallizes in space group P$\bar{1}$ , Z = 2, with a = 6.0502(3) Å, b = 9.2359(4) Å, c = 11.4317(5) Å, α = 75.584(2)°, β = 80.260(2)°, γ = 74.178(2)°, at 293 K. Its structure has been determined from X‐ray single‐crystal data and refined to R1 = 0.022{wR2 = 0.058 for 4633 unique reflections with Fo > 4σ (Fo)}. From magnetic measurements μeff = 1.51 μB/Cu and θP = –37.4 K have been determined. The Vis/NIR spectrum of aqua‐green Li2Cu5(PO4)4 shows a single broad band centered around $\bar{1}$ = 12000 cm–1. Magnetic behavior and spectrum are discussed within the angular overlap model.  相似文献   

7.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

8.
Reactions of rubidium or barium salts of the ortho‐selenostannate anion, [Rb4(H2O)4][SnSe4] ( 1 ) or [Ba2(H2O)5][SnSe4] ( 2 ) with Zn(OAc)2 or ZnCl2 in aqueous solution yielded two novel compounds with different ternary Zn/Sn/Se anions, [Rb10(H2O)14.5][Zn4(μ4‐Se)2(SnSe4)4] ( 3 ) and [Ba5(H2O)32][Zn5Sn(μ3‐Se)4(SnSe4)4] ( 4 ). 1 – 4 have been determined by means of single crystal X‐ray diffraction: 1 : triclinic space group lattice dimensions at 203 K: a = 8.2582(17) Å, b = 10.634(2) Å, c = 10.922(2) Å, α = 110.16(3)°, β = 91.74(3)°, γ = 97.86(3)°, V = 888.8(3) Å3; R1 [I > 2σ(I)] = 0.0669; wR2 = 0.1619; 2 : orthorhombic space group Pnma; lattice dimensions at 203 K: a = 17.828(4) Å, b = 11.101(2) Å, c = 6.7784(14) Å, V = 1341.5(5) Å3; R1 [I > 2σ(I)] = 0.0561; wR2 = 0.1523; 3 : triclinic space group ; lattice dimension at 203 K: a = 17.431(4) Å, b = 17.459(4) Å, c = 22.730(5) Å, α = 105.82(3)°, β = 99.17(3)°, γ = 90.06(3)°, V = 6563.1(2) Å3; R1 [I > 2σ(I)] = 0.0822; wR2 = 0.1782; 4 : monoclinic space group P21/c; lattice dimensions at 203 K: a = 25.231(5) Å, b = 24.776(5) Å, c = 25.396(5) Å, β = 106.59(3)°, V = 15215.0(5) Å3; R1 [I > 2σ(I)] = 0.0767; wR2 = 0.1734. The results serve to underline the crucial role of the counterion for the type of ternary anion to be observed in the crystal. Whereas Rb+(aq) stabilizes a P1‐type Zn/Sn/Se supertetrahedron in 3 like K+, the Ba2+(aq) ions better fit to an anionic T3‐type Zn/Sn/Se cluster arrangement as do Na+ ions. It is possible to estimate a radius:charge ratio for the stabilization of the two structural motifs.  相似文献   

9.
Three new oxo‐centered trinuclear mixed‐bridged carboxylate complexes with terminal unsaturated ligands ([M2M′(μ3‐O)(μ‐O2C3H3)5(μ‐O4C6H7)(O2C3H3) (H2O)2]·2H2O [M = Fe, M′ = Fe ( 1 ); M = Fe, M′ = Cr ( 2 ); M = Cr, M′ = Fe ( 3 )]) have been synthesized and characterized by means of elemental analyses, IR spectra and crystal structure analyses. The compounds crystallize isotypically in the orthorhombic space group type Pbcn with a = 24.622(3) Å, b = 16.304(2) Å, c = 17.491(2) Å, V = 7021.5(15) Å3 ( 1 ), a = 24.708(5) Å, b = 16.290(2) Å, c = 17.394(2) Å, V = 7001.0(18) Å3 ( 2 ), a = 24.611(4) Å, b = 16.300(3) Å, c = 17.359(3) Å, V = 6964(2) Å3 ( 3 ), and Z = 8. The infrared spectra show resolved bands arising from νasym(OCO) and νsym(OCO) vibrations of monodentate and bridging carboxylate ligands along with those of νasym(M2M′O) vibrations in the complexes.  相似文献   

10.
Three ternary rare earth [NdIII ( 1 ), SmIII ( 2 ) and YIII ( 3 )] complexes based on 3‐[(4,6‐dimethyl‐2‐pyrimidinyl)thio]‐propanoic acid (HL) and 1,10‐phenanthroline (Phen) were synthesized and characterized by IR and UV/Vis spectroscopy, TGA, and single‐crystal X‐ray diffraction. The crystal structures showed that complexes 1 – 3 contain dinuclear rare earth units bridged by four propionate groups and are of general formula [REL3(Phen)]2 · nH2O (for 1 and 2 : n = 2; for 3 : n = 0). All rare earth ions are nine‐coordinate with distorted mono‐capped square antiprismatic coordination polyhedra. Complex 1 crystallizes in the monoclinic system, space group P21/c with a = 16.241(7) Å, b = 16.095(7) Å, c = 19.169(6) Å, β = 121.48(2)°. Complex 2 crystallizes in the monoclinic system, space group P21/c with a = 16.187(5) Å, b = 16.045(4) Å, c = 19.001(4) Å, β = 120.956(18)°. Complex 3 crystallizes in the triclinic system, space group P1 with a = 11.390(6) Å, b = 13.636(6) Å, c = 15.958(7) Å, α = 72.310(17)°, β = 77.548(15)°, γ = 78.288(16)°. The antioxidant activity test shows that all complexes own higher antioxidant activity than free ligands.  相似文献   

11.
New Thiophosphates: The Compounds Li6Ln3(PS4)5 (Ln: Y, Gd, Dy, Yb, Lu) and Ag3Y(PS4)2 The new thiophosphates Li6Ln3(PS4)5 (Ln: Y, Gd, Dy, Yb, Lu) were synthesized by heating mixtures of Ln, P, S, and Li2S4 at 900 °C (100 h) and they were investigated by single crystal X‐ray methods. The compounds with Ln = Y (a = 28.390(2), b = 10.068(1), c = 33.715(2) Å, β = 113.85(1)°), Gd (a = 28.327(2), b = 10.074(1), c = 33.822(2) Å, β = 114.297(7)°), Dy (a = 28.124(6), b = 10.003(2), c = 33.486(7) Å, β = 113.89(3)°), Yb (a = 28.178(3), b = 9.977(1), c = 33.392(4) Å, β = 113.65(1)°), and Lu (a = 28.169(6), b = 10.002(2), c = 33.432(7) Å, β = 113.54(3)°) are isotypic and crystallize in a new structure type (C2/c; Z = 12). Main feature are PS4 tetrahedra isolated from each other surrounding the Ln and Li atoms via their S atoms. The coordination number of the five crystallographically independent Ln atoms is eight, but the polyhedra are quite different and they are interlinked to larger units extending in [010]. The environment of the Li atoms is irregular and formed by five to six S atoms. The crystal structure is compared with that of Li9Ln2(PS4)5 (Ln: Nd, Gd). For the synthesis of Ag3Y(PS4)2 (a = 16.874(3), b = 9.190(2), c = 9.312(2) Å, β = 123.17(3)°) a mixture of Y, P, S, and Ag2S was heated to 700 °C (50 h). The thiophosphate crystallizes in a new structure type (C2/c; Z = 4) composed of isolated PS4 tetrahedra. The two crystallographically independent Ag atoms are surrounded by four S atoms in the shape of distorted tetrahedra. The Ag(1)S4 polyhedra are cornershared to strands running along [001], which are linked together via Ag(2)S4 tetrahedra. The environment of the Y atoms is composed of eight S atoms each building distorted square antiprisms. These polyhedra are connected with each other via common edges to a strand running along [001].  相似文献   

12.
Sr3(BS3)2 and Sr3(B3S6)2: Two Novel Non‐oxidic Chalcogenoborates with Boron in a Trigonal‐Planar Coordination The thioborates Sr3(BS3)2 and Sr3(B3S6)2 were prepared from strontium sulfide, amorphous boron and sulfur in solid state reactions at a temperature of 1123 K. In a systematic study on the structural cation influence on this type of ternary compounds, the crystal structures were determined by single crystal X‐ray diffraction. Sr3(BS3)2 crystallizes in the monoclinic spacegroup C2/c (No. 15) with a = 10.187(4) Å, b = 6.610(2) Å, c = 15.411(7) Å, β = 102.24(3)° and Z = 4. The crystal structure of Sr3(B3S6)2 is trigonal, spacegroup R3¯ (Nr. 148), with a = 8.605(1) Å, c = 21.542(4) Å and Z = 3. Sr3(BS3)2 contains isolated [BS3]3— anions with boron in a trigonal‐planar coordination. The strontium cations are found between the layers of orthothioborate anions. Sr3(B3S6)2 consists of cyclic [B3S6]3— anions and strontium cations, respectively.  相似文献   

13.
Ping Li  Zhihong Liu 《中国化学》2012,30(4):847-853
A new hydrated lithium borate, Li4[B8O13(OH)2]·3H2O, has been hydrothermally synthesized and characterized by single crystal X‐ray diffraction, FT‐IR spectroscopy, simultaneous TGA‐DTA and chemical analysis. It crystallizes in the triclinic, space group , a=8.4578(5) Å, b=8.7877(5) Å, c=10.8058(7) Å, α=87.740(3)°, β=71.819(3)°, γ=61.569(3)°, Z=2, V=665.26(7) Å3, Dc=2.043 g/cm3. Its crystal structure features polyborate anionic layers with the larger odd 13‐membered boron rings constructed by [B8O13(OH)2]4? FBBs. Through designing the thermochemical cycle, the standard molar enthalpy of formation of this borate was determined to be ?(7953.8±6.6) kJ·mol?1 by using a heat conduction microcalorimeter.  相似文献   

14.
Alkoxo Compounds of Iron(III): Syntheses and Characterization of [Fe2(OtBu)6], [Fe2Cl2(OtBu)4], [Fe2Cl4(OtBu)2] and [N(nBu)4]2[Fe6OCl6(OMe)12] The reaction of iron(III)chloride in diethylether with sodium tert‐butylat yielded the homoleptic dimeric tert‐‐butoxide Fe2(OtBu)6 ( 1 ). The chloro‐derivatives [Fe2Cl2(OtBu)4] ( 2 ), and [Fe2Cl4(OtBu)2] ( 3 ) could be synthesized by ligand exchange between 1 and iron(III)chloride. Each of the molecules 1 , 2 , and 3 consists of two edge‐sharing tetrahedrons, with two tert‐butoxo‐groups as μ2‐bridging ligands. For the synthesis of the alkoxides 1 , 2 , and 3 diethylether plays an important role. In the first step the dietherate of iron(III)chloride FeCl3(OEt2)2 ( 4 ) is formed. The reaction of iron(III)chloride with tetrabutylammonium methoxide in methanol results in the formation of a tetrabutylammonium methoxo‐chloro‐oxo‐hexairon cluster [N(nBu)4]2[Fe6OCl6(OMe)12] ( 5 ). Crystal structure data: 1 , triclinic, P1¯, a = 9.882(2) Å, b = 10.523(2) Å, c = 15.972(3) Å, α = 73.986(4)°, β = 88.713(4)°, γ = 87.145(4)°, V = 1594.4(5) Å3, Z = 2, dc = 1.146 gcm—1, R1 = 0.044; 2 , monoclinic, P21/n, a = 11.134(2) Å, b = 10.141(2) Å, c = 12.152(2) Å und β = 114.157(3)°, V = 1251.8(4) Å3, Z = 2, dc = 1.377 gcm—1, R1 = 0.0581; 3 , monoclinic, P21/n, a = 6.527(2) Å, b = 11.744(2) Å, c = 10.623(2), β = 96.644(3)°, V = 808.8(2) Å3, Z = 2, dc = 1.641 gcm—1, R1 = 0.0174; 4 , orthorhombic, Iba2, a = 23.266(5) Å, b = 9.541(2) Å, c = 12.867(3) Å, V = 2856(2) Å3, Z = 8, dc = 1.444 gcm—1, R1 = 0.0208; 5 , trigonal, P31, a = 13.945(2) Å, c = 30.011(6) Å, V = 5054(2) Å3, Z = 6, dc = 1.401 gcm—1; Rc = 0.0494.  相似文献   

15.
Alcoholysis of [Fe2(OtBu)6] as a Simple Route to New Iron(III)‐Alkoxo Compounds: Synthesis and Crystal Structures of [Fe2(OtAmyl)6], [Fe5OCl(OiPr)12], [Fe5O(OiPr)13], [Fe5O(OiBu)13], [Fe5O(OCH2CF3)13], [Fe5O(OnPr)13], and [Fe9O3(OnPr)21] · nPrOH New alkoxo‐iron compounds can be synthesized easily by alcoholysis of [Fe2(OtBu)6] ( 1 ). Due to different bulkyness of the alcohols used, three different structure types are formed: [Fe2(OR)6], [Fe5O(OR)13] and [Fe9O3(OR)21] · ROH. We report synthesis and crystal structures of the compounds [Fe5OCl(OiPr)12] ( 2 ), [Fe2(OtAmyl)6] ( 3 ), [Fe5O(OiPr)13] ( 4 ), [Fe5O(OiBu)13] ( 5 ), [Fe5O(OCH2CF3)13] ( 6 ), [Fe9O3(OnPr)21] · nPrOH ( 7 ) and [Fe5O(OnPr)13] ( 8 ). Crystallographic Data: 2 , tetragonal, P 4/n, a = 16.070(5) Å, c = 9.831(5) Å, V = 2539(2) Å3, Z = 2, dc = 1.360 gcm?3, R1 = 0.0636; 3 , monoclinic, P 21/c, a = 10.591(5) Å, b = 10.654(4) Å, c = 16.740(7) Å, β = 104.87(2)°, V = 1826(2) Å3, Z = 2, dc = 1.154 gcm?3, R1 = 0.0756; 4 , triclinic, , a = 20.640(3) Å, b = 21.383(3) Å, c = 21.537(3) Å, α = 82.37(1)°, β = 73.15(1)°, γ = 61.75(1)°, V = 8013(2) Å3, Z = 6, dc = 1.322 gcm?3, R1 = 0.0412; 5 , tetragonal, P 4cc, a = 13.612(5) Å, c = 36.853(5) Å, V = 6828(4) Å3, Z = 4, dc = 1.079 gcm?3, R1 = 0.0609; 6 , triclinic, , a = 12.039(2) Å, b = 12.673(3) Å, c = 19.600(4) Å, α = 93.60(1)°, β = 97.02(1)°, γ = 117.83(1)°, V = 2600(2) Å3, Z = 2, dc = 2.022 gcm?3, R1 = 0.0585; 7 , triclinic, , a = 12.989(3) Å, b = 16.750(4) Å, c = 21.644(5) Å, α = 84.69(1)°, β = 86.20(1)°, γ = 77.68(1)°, V = 4576(2) Å3, Z = 2, dc = 1.344 gcm?3, R1 = 0.0778; 8 , triclinic, , a = 12.597(5) Å, b = 12.764(5) Å, c = 16.727(7) Å, α = 91.94(1)°, β = 95.61(1)°, γ = 93.24(2)°, V = 2670(2) Å3, Z = 2, dc = 1.323 gcm?3, R1 = 0.0594.  相似文献   

16.
Li7MO6 (M = Bi, Ru, Os) have been synthesized by solid state reaction of Li2O with Bi2O3, or MO2 (M = Ru, Os) and characterized using powder X‐ray diffraction, differential scanning calorimetry, magnetic susceptibility (for M = Ru, Os), ionic conductivity and 6Li solid state NMR (for M = Bi) measurements. All three compounds exhibit a temperature induced triclinic – rhombohedral phase transition. Structures of the new low temperature triclinic phases have been refined by the Rietveld method from powder X‐ray data using atomic parameters of Li7TaO6 as a starting model ( Li7BiO6 : triclinic, , a = 5.5071(1), b = 6.0425(1), c = 5.5231(1) Å, α = 116.912(1), β = 120.867(1), γ = 62.234(1)°, V = 133.96(1) Å3, Z = 1, T = 230 K; Li7RuO6 : triclinic, , a = 5.3654(1), b = 5.8584(1), c = 5.3496(1) Å, α = 117.182(1), β = 119.117(1), γ = 62.632(1)°, V = 124.43(1) Å3, Z = 1, T = 295 K; Li7OsO6 : triclinic, , a = 5.3786(1), b = 5.8725(1), c = 5.3591(1) Å, α = 117.193(1), β = 119.277(1), γ = 62.700(1)°, V = 125.15(1) Å3, Z = 1, T = 295 K). Upon cooling, Li7RuO6 and Li7OsO6 undergo a magnetic transition at 12 and 13 K, respectively, from the paramagnetic to the antiferromagnetic state. The higher ionic conductivity of Li7BiO6 at T < 300 °C, as compared to Li7RuO6 and Li7OsO6, can be ascribed to the undergoing of the triclinic – rhombohedral transition at a much lower temperature. At T > 300 °C, the ionic conductivity of all three compounds increases sharply due to the melting of the lithium sublattice; for Li7RuO6 and Li7OsO6 the latter effect is superimposed by the phase transitions to the rhombohedral modifications.  相似文献   

17.
The first selenite chloride hydrates, Co(HSeO3)Cl · 3 H2O and Cu(HSeO3)Cl · 2 H2O, have been prepared from solution and characterised by single‐crystal X‐ray diffraction. The cobalt phase adopts an unusual “one‐dimensional” structure built up from vertex‐sharing pyramidal [HSeO3]2–, and octahedral [CoO2(H2O)4]2– and [CoO2(H2O)2Cl2]4– units. Inter‐chain bonding is by way of hydrogen bonds or van der Waals' interactions. The atomic arrangement of the copper phase involves [HSeO3]2– pyramids and Jahn‐Teller distorted [CuCl2(H2O)4] and [CuO4Cl2]8– octahedra, sharing vertices by way of Cu–O–Se and Cu–Cl–Cu bonds. Crystal data: Co(HSeO3)Cl · 3 H2O, Mr = 276.40, triclinic, space group P 1 (No. 2), a = 7.1657(5) Å, b = 7.3714(5) Å, c = 7.7064(5) Å, α = 64.934(1)°, β = 68.894(1)°, γ = 71.795(1)°, V = 337.78(7) Å3, Z = 2, R(F) = 0.036, wR(F) = 0.049. Cu(HSeO3)Cl · 2 H2O, Mr = 263.00, orthorhombic, space group Pnma (No. 62), a = 9.1488(3) Å, b = 17.8351(7) Å, c = 7.2293(3) Å, V = 1179.6(2) Å3, Z = 8, R(F) = 0.021, wR(F) = 0.024.  相似文献   

18.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

19.
The synthesis, structure, and magnetic properties of four 2,2′‐dipyridylamine ligand (abbreviated as Hdpa) containing copper(II) complexes. There is one binuclear compound, which is [Cu21,1‐NCO)2(NCO)2(Hdpa)2] ( 1 ), and three mononuclear compounds, which are [Cu{N(CN)2}2(Hdpa)2] ( 2 ), [Cu(CH3CO2)(Hdpa)2·N(CN)2] ( 3 ), and [Cu(NCS)(Acac)] ( 4 ). Compounds 1 and 4 crystallize in the monoclinic system, space group P2(1)/c and Z = 4, with a = 8.2465(6) Å, b = 9.3059(7) Å, c = 16.0817(12) Å, β = 91.090(1)°, and V = 1233.90(16) Å3 for 1 and a = 7.6766(6) Å, b = 21.888(3) Å, c = 10.4678(12) Å, β = 90.301(2)°, and V= 1758.8(4) Å3 for 4 . Compounds 2 and 3 crystallize in the triclinic system, space group P‐1 and Z = 1, with a = 8.1140(3) Å, b = 8.2470(3) Å, c = 9.3120(4) Å, β = 102.2370(10)°, and V = 592.63(4) Å3 for 2 and a = 7.4780(2) Å, b = 12.5700(3) Å, c = 13.0450(3) Å, β = 96.351(2)°, and V = 1211.17(5) Å3 for 3 . Complex ( 1 ), the magnetic data was fitted by the Bleaney‐Bowers equation (1). A very good fit was derived with J = 23.96, Θ = ?1.5 (g = 1.97). Complex ( 1 ) shows the ferromagnetism. Complexes ( 2 ), ( 3 ) and ( 4 ) of have the it is the typical paramagnetic behavior of unpaired electrons. Under a low temperature around 25 K, complexes ( 2 ) and ( 3 ) show weak ferromagnetic behavior. They are the cause of hydrogen bonds.  相似文献   

20.
The Lanthanumiodideethanide o‐La5I9(C2) – The Orthorhombic High Temperature Modification o‐La5I9(C2) is synthesized by reaction of LaI3, La metal and graphite powder in sealed Ta containers at 850 °C < T < 900 °C. It crystallizes in the orthorhombic space group Pbca with a = 8.0247(16) Å, b = 16.887(3) Å, c = 35.886(7) Å. o‐Ce5I9(C2) is isotypic with the lattice parameters a = 7.9284(4) Å, b = 16.714(1) Å, c = 35.530(3) Å. o‐La5I9(C2) transforms at 800 °C to the triclinic low temperature modification t‐La5I9(C2). The transformation is reversible. The La atoms form trigonal bipyramids centered by C2 groups. These units are connected by iodine atoms above the faces (f), edges (e) and corners according to La5(C2)I(f)iI(e)i?i2/2I(e)i?a7/2I(e)a?i7/2. The C‐C distance in the C2 unit is 1.45(2) Å. The crystals with greenish luster are moisture sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号