首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this article, for second order elliptic problems with constant coefficients, the local ultraconvergence of the derivative of finite element method using piecewise polynomials of degrees k (k ≥ 2) is studied by the interpolation postprocessing technique. Under suitable regularity and mesh conditions, we prove that at an interior vertex, which is away from the boundary with a fixed distance, the gradient of the postprecessed finite element solution using piecewise polynomials of degrees k (k ≥ 2) converges to the gradient of the exact solution with order . Numerical experiments are used to illustrate our theoretical findings.  相似文献   

2.
This article proposes and analyzes a C0‐weak Galerkin (WG) finite element method for solving the biharmonic equation in two‐dimensional and three‐dimensional. The new WG method uses continuous piecewise‐polynomial approximations of degree for the unknown u and discontinuous piecewise‐polynomial approximations of degree k for the trace of on the interelement boundaries. Optimal error estimates are obtained in H2, H1, and L2 norms. Numerical experiments illustrate and confirm the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1090–1104, 2016  相似文献   

3.
In this article, Richardson extrapolation technique is employed to investigate the local ultraconvergence properties of Lagrange finite element method using piecewise polynomials of degrees () for the second order elliptic problem with inhomogeneous boundary. A sequence of special graded partition are proposed and a new interpolation operator is introduced to achieve order local ultraconvergence for the displacement and derivative.  相似文献   

4.
The ∞ ‐Bilaplacian is a third‐order fully nonlinear PDE given by (1) In this work, we build a numerical method aimed at quantifying the nature of solutions to this problem, which we call ∞ ‐biharmonic functions. For fixed p we design a mixed finite element scheme for the prelimiting equation, the p‐Bilaplacian (2) We prove convergence of the numerical solution to the weak solution of and show that we are able to pass to the limit p → ∞ . We perform various tests aimed at understanding the nature of solutions of and we prove convergence of our discretization to an appropriate weak solution concept of this problem that of ‐solutions.  相似文献   

5.
The evolution equation is considered. A discrete parabolic methodology is developed, based on a discrete elliptic (fourth‐order) calculus. The main ingredient of this calculus is a discrete biharmonic operator (DBO). In the general case, it is shown that the approximate solutions converge to the continuous one. An “almost optimal” convergence result (O(h4 ? ?)) is established in the case of constant coefficients, in particular in the pure biharmonic case. Several numerical test cases are presented that not only corroborate the theoretical accuracy result, but also demonstrate high‐order accuracy of the method in nonlinear cases. The nonlinear equations include the well‐studied Kuramoto–Sivashinsky equation. Numerical solutions for this equation are shown to approximate remarkably well the exact solutions. The numerical examples demonstrate the great improvement achieved by using the DBO instead of the standard (five‐point) discrete bilaplacian.  相似文献   

6.
In this paper, the superconvergence analysis of a two‐grid method (TGM) with low‐order finite elements is presented for the fourth‐order dispersive‐dissipative wave equations for a second order fully discrete scheme. The superclose estimates in the H1‐norm on the two grids are obtained by the combination technique of the interpolation and Ritz projection. Then, with the help of the interpolated postprocessing technique, the global superconvergence properties are deduced. Finally, numerical results are provided to show the performance of the proposed TGM for conforming bilinear element and nonconforming element, respectively. It shows that the TGM is an effective method to the problem considered of our paper compared with the traditional Galerkin finite element method (FEM).  相似文献   

7.
We consider conforming finite element approximation of fourth‐order singularly perturbed problems of reaction diffusion type. We prove superconvergence of standard C1 finite element method of degree p on a modified Shishkin mesh. In particular, a superconvergence error bound of in a discrete energy norm is established. The error bound is uniformly valid with respect to the singular perturbation parameter ?. Numerical tests indicate that the error estimate is sharp. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 550–566, 2014  相似文献   

8.
This article studies the least‐squares finite element method for the linearized, stationary Navier–Stokes equation based on the stress‐velocity‐pressure formulation in d dimensions (d = 2 or 3). The least‐squares functional is simply defined as the sum of the squares of the L2 norm of the residuals. It is shown that the homogeneous least‐squares functional is elliptic and continuous in the norm. This immediately implies that the a priori error estimate of the conforming least‐squares finite element approximation is optimal in the energy norm. The L2 norm error estimate for the velocity is also established through a refined duality argument. Moreover, when the right‐hand side f belongs only to , we derive an a priori error bound in a weaker norm, that is, the norm. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1289–1303, 2016  相似文献   

9.
To improve the convergence rate in L2 norm from suboptimal to optimal for both electrostatic potential and ionic concentrations in Poisson‐Nernst‐Planck (PNP) system, we propose the mixed finite element method in this article to discretize the electrostatic potential equation, and still use the standard finite element method to discretize the time‐dependent ionic concentrations equations. Optimal error estimates in norm for the electrostatic potential, and in and norms for the ionic concentrations are attained. As a by‐product, the electric field can also achieve a higher approximation order in contrast with the standard finite element method for PNP system. Numerical experiments are performed to validate the theoretical results.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1924–1948, 2017  相似文献   

10.
In this paper, we consider the numerical solution of the time‐fractional telegraph equation with a nonlocal boundary condition. A novel barycentric Lagrange interpolation collocation method is developed to solve this equation. Two difficulties have been sorted: the singularity of the integration and the higher accuracy. At the same, we put forward a steady barycentric Lagrange interpolation technique to overcome the new “Runge” phenomenon in computation. Error estimates of the barycentric Lagrange interpolation and the time‐fractional telegraph system for the present method are presented in Sobolev spaces. High convergence rates of the proposed method are obtained and are consisted with the numerical values. Especially in the time dimension, we get the error bound, for h‐refinement and for nt‐density in the L2 norms. The numerical results obtained show that the proposed numerical algorithm is accurate and computationally efficient for solving time‐fractional telegraph equation. Experiments demonstrate the high convergence rates of the proposed method are consisted with the theoretical values.  相似文献   

11.
We prove that the mixing time of the Glauber dynamics for sampling independent sets on n‐vertex k‐uniform hypergraphs is when the maximum degree Δ satisfies Δ ≤ c2k/2, improving on the previous bound Bordewich and co‐workers of Δ ≤ k ? 2. This result brings the algorithmic bound to within a constant factor of the hardness bound of Bezakova and co‐workers which showed that it is NP‐hard to approximately count independent sets on hypergraphs when Δ ≥ 5·2k/2.  相似文献   

12.
In this paper, the author derives an ‐superconvergence for the piecewise linear Ritz‐Galerkin finite element approximations for the second‐order elliptic equation equipped with Dirichlet boundary conditions. This superconvergence error estimate is established between the finite element solution and the usual Lagrange nodal point interpolation of the exact solution, and thus the superconvergence at the nodal points of each element. The result is based on a condition for the finite element partition characterized by the coefficient tensor and the usual shape functions on each element, called ‐equilateral assumption in this paper. Several examples are presented for the coefficient tensor and finite element triangulations which satisfy the conditions necessary for superconvergence. Some numerical experiments are conducted to confirm this new theory of superconvergence.  相似文献   

13.
We analyze the superconvergence properties of the local discontinuous Galerkin (LDG) method applied to the second‐order wave equation in one space dimension. With a suitable projection of the initial conditions for the LDG scheme, we prove that the LDG solution and its spatial derivative are super close to particular projections of the exact solutions for pth‐degree polynomial spaces. We use these results to show that the significant parts of the discretization errors for the LDG solution and its derivative are proportional to ‐degree right and left Radau polynomials, respectively. These results allow us to prove that the p‐degree LDG solution and its derivative are superconvergent at the roots of ‐degree right and left Radau polynomials, respectively, while computational results show higher convergence rate. Superconvergence results can be used to construct asymptotically correct a posteriori error estimates by solving a local steady problem on each element. This will be discussed further in Part II of this work, where we will prove that the a posteriori LDG error estimates for the solution and its derivative converge to the true spatial errors in the L 2‐norm under mesh refinement. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 862–901, 2014  相似文献   

14.
A sequence contains a pattern , that is, a permutations of [k], iff there are indices i1 < … < ik, such that f(ix) > f(iy) whenever π(x) > π(y). Otherwise, f is π‐free. We study the property testing problem of distinguishing, for a fixed π, between π‐free sequences and the sequences which differ from any π‐free sequence in more than ? n places. Our main findings are as follows: (1) For monotone patterns, that is, π = (k,k ? 1,…,1) and π = (1,2,…,k), there exists a nonadaptive one‐sided error ?‐test of query complexity. For any other π, any nonadaptive one‐sided error test requires queries. The latter lower‐bound is tight for π = (1,3,2). For specific it can be strengthened to Ω(n1 ? 2/(k + 1)). The general case upper‐bound is O(??1/kn1 ? 1/k). (2) For adaptive testing the situation is quite different. In particular, for any there exists an adaptive ?‐tester of query complexity.  相似文献   

15.
In this article, we develop a Crank–Nicolson alternating direction implicit finite volume method for time‐dependent Riesz space‐fractional diffusion equation in two space dimensions. Norm‐based stability and convergence analysis are given to show that the developed method is unconditionally stable and of second‐order accuracy both in space and time. Furthermore, we develop a lossless matrix‐free fast conjugate gradient method for the implementation of the numerical scheme, which only has memory requirement and computational complexity per iteration with N being the total number of spatial unknowns. Several numerical experiments are presented to demonstrate the effectiveness and efficiency of the proposed scheme for large‐scale modeling and simulations.  相似文献   

16.
It is well known that many random graphs with infinite variance degrees are ultra‐small. More precisely, for configuration models and preferential attachment models where the proportion of vertices of degree at least k is approximately k?(τ ? 1) with τ ∈ (2,3), typical distances between pairs of vertices in a graph of size n are asymptotic to and , respectively. In this paper, we investigate the behavior of the diameter in such models. We show that the diameter is of order precisely when the minimal forward degree dfwd of vertices is at least 2. We identify the exact constant, which equals that of the typical distances plus . Interestingly, the proof for both models follows identical steps, even though the models are quite different in nature.  相似文献   

17.
In this article, we analyze a residual‐based a posteriori error estimates of the spatial errors for the semidiscrete local discontinuous Galerkin (LDG) method applied to the one‐dimensional second‐order wave equation. These error estimates are computationally simple and are obtained by solving a local steady problem with no boundary condition on each element. We apply the optimal L2 error estimates and the superconvergence results of Part I of this work [Baccouch, Numer Methods Partial Differential Equations 30 (2014), 862–901] to prove that, for smooth solutions, these a posteriori LDG error estimates for the solution and its spatial derivative, at a fixed time, converge to the true spatial errors in the L2‐norm under mesh refinement. The order of convergence is proved to be , when p‐degree piecewise polynomials with are used. As a consequence, we prove that the LDG method combined with the a posteriori error estimation procedure yields both accurate error estimates and superconvergent solutions. Our computational results show higher convergence rate. We further prove that the global effectivity indices, for both the solution and its derivative, in the L2‐norm converge to unity at rate while numerically they exhibit and rates, respectively. Numerical experiments are shown to validate the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1461–1491, 2015  相似文献   

18.
We consider the fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition. First, we investigate the error estimates for the penalty method at the continuous level. We obtain the convergence of order in H1‐norm for the velocity and in L2‐norm for the pressure, where is the penalty parameter. The L2‐norm error estimate for the velocity is upgraded to . Moreover, we derive the a priori estimates depending on for the solution of the penalty problem. Next, we apply the finite element approximation to the penalty problem using the P1/P1 element with stabilization. For the discrete penalty problem, we prove the error estimate in H1‐norm for the velocity and in L2‐norm for the pressure, where h denotes the discretization parameter. For the velocity in L2‐norm, the convergence rate is improved to . The theoretical results are verified by the numerical experiments.  相似文献   

19.
In this short note we extend some results obtained in [7]. First, we prove that for an abelian variety A with good ordinary reduction over a finite extension of with p an odd prime, the Albanese kernel of A is the direct sum of its maximal divisible subgroup and a torsion group. Second, for a semi‐abelian variety G over a perfect field k, we construct a decreasing integral filtration of Suslin's singular homology group, , such that the successive quotients are isomorphic to a certain Somekawa K‐group.  相似文献   

20.
For any set Ω of non‐negative integers such that , we consider a random Ω‐k‐tree Gn,k that is uniformly selected from all connected k‐trees of (n + k) vertices such that the number of (k + 1)‐cliques that contain any fixed k‐clique belongs to Ω. We prove that Gn,k, scaled by where Hk is the kth harmonic number and σΩ > 0, converges to the continuum random tree . Furthermore, we prove local convergence of the random Ω‐k‐tree to an infinite but locally finite random Ω‐k‐tree G∞,k.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号