首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
QuEChERS净化GC/ECD测定苹果和柑橘中4种常用杀螨剂残留   总被引:1,自引:0,他引:1  
采用QuEChERS方法净化,建立了气相色谱法/电子捕获检测器(GC/ECD)同时检测苹果和柑橘中四螨嗪、虫螨腈、溴螨酯和哒螨灵残留的分析方法。苹果和柑橘样品用乙腈提取,适量C_(18)填料和无水MgSO_4净化提取液,GC/ECD检测,基质匹配标准溶液外标法定量。四螨嗪、哒螨灵在0.02~2.0 mg/L浓度范围内,虫螨腈、溴螨酯在0.004~0.5 mg/L浓度范围内的线性关系良好,相关系数(r)均大于0.99,定量下限(LOQs)为0.001~0.02 mg/kg。苹果和柑橘样品中4种杀螨剂的平均加标回收率(n=6)为76.4%~111.8%,相对标准偏差(RSDs)不超过13.4%。该方法简便、快速,能够满足苹果和柑橘中上述4种杀螨剂残留同时检测的需要。采用该方法测定了4种杀螨剂在苹果和柑橘中的残留量,结果满意。  相似文献   

2.
动态液相微萃取GC/MS-SIM方法检验毛发中的苯丙胺类毒品   总被引:2,自引:0,他引:2  
建立了动态液相微萃取GC/MS-SIM方法检测毛发中4种苯丙胺类毒品的方法.毛发样品首先用1 mol/L NaOH溶液消解,然后用50μL氯仿涡旋提取1min,离心后用注射器直接抽取有机相,提取液进行GC/MS-SIM方法检测.毛发样品的测出限(S/N=3)分别为苯丙胺1 ng/mg,甲基苯丙胺、3、4-(亚甲二氧基)苯丙胺、3、4(亚甲二氧基)-甲基苯丙胺500 pg/mg.在毛发中添加上述4种苯丙胺毒品的质量分数为5 ng/mg时,5次测定的RSD分别为苯丙胺8.3%,甲基苯丙胺8.2%,3、4-(亚甲二氧基)苯丙胺2.0%,3、4(亚甲二氧基)2.7%.该方法可用于毛发中低含量苯丙胺类毒品的分析.  相似文献   

3.
微波萃取/气相色谱-质谱测定土壤中的多氯联苯   总被引:9,自引:1,他引:9  
分别对多氯联苯的微波萃取条件进行了优化。优化后的分析条件为微波功率1200 W,萃取温度115℃,萃取时间20 min,萃取溶剂为V(正己烷)∶V(丙酮)=1∶1。方法的检出限为20~30 ng/g,线性范围40~4000 ng/mL(多氯联苯总量),相关系数均大于0.9990,样品基体加标回收率为92.2%~115%,相对标准偏差为9.4%(n=6)。  相似文献   

4.
采用QuEChERS方法净化,建立了GC/ECD法同时检测茶叶和土壤中噻虫嗪、虫螨腈和高效氯氟氰菊酯残留的分析方法。样品经水浸润后,乙腈提取,适量PSA、GCB和Florisil混合填料净化提取液,GC/ECD检测。噻虫嗪、虫螨腈和高效氯氟氰菊酯的响应分别在0.50~400、0.20~100、0.40~200μg/L质量浓度范围内线性良好,相关系数r均大于0.99,检出限分别为0.25、0.05、0.10μg/L。茶叶和土壤样品中,噻虫嗪、虫螨腈和高效氯氟氰菊酯的平均加标回收率为62%~108%,相对标准偏差(RSDs)不大于15.8%,方法的定量下限(LOQs)均不大于10μg/kg。方法简便、快速,能够满足茶叶和土壤中上述3种不同极性农药残留同时检测的需要。采用该方法测定了3种农药在茶园茶叶和土壤中的残留量,结果满意。  相似文献   

5.
Lin J  Su M  Wang X  Qiu Y  Li H  Hao J  Yang H  Zhou M  Yan C  Jia W 《Journal of separation science》2008,31(15):2831-2838
Using design of experiment (DOE) theory coupled with multivariate statistical analysis, we have developed a simple and reliable GC/MS-based analytical assay for simultaneous analysis of amino acids and organic acids in rat brain tissue samples. The process of water extraction (pH 10.0) was extensively evaluated using brain tissue samples and a set of 21 reference standards. Acceptable calibration curves were obtained over a wide concentration range, 0.2-35.0 microg/mL for standards and 15.0-2.4 mL/g (tissue) for brain tissue samples. The precision was mostly better than 10% for both the mixed standards and the brain tissue samples. The brain tissue samples exhibited good stability within 48 h with RSD generally less than 15%. Furthermore, the developed analytical method was successfully applied in distinguishing the subtle variation among different parts of the brain tissues, such as cerebral cortex, hippocampus, and thalamus.  相似文献   

6.
Pollution of the environment by pharmaceuticals is a subject of growing scientific and societal concern. However, few quantitative data have been reported concerning hospital wastewater contamination. Among the different molecules used at hospital, antineoplastic drugs appear to be of special interest, and 5-fluorouracil (5-FU) can be considered as a key compound of this therapeutic class. To monitor this pharmaceutical in hospital wastewater, a highly specific and selective method was developed using gas chromatography tandem mass spectrometry after solid-phase extraction. This sensitive method (limit of quantification = 40 ng L−1) was then applied to assess sewage contamination of a middle-size hospital with oncology service located in Paris, France. Native 5-FU was detectable in 12 of the 14 analysed samples. In positive samples, concentration range was measured from 0.09 to 4.0 μg L−1. Finally, a predicting model for the hospital wastewater concentrations is presented, and results of this model are discussed.  相似文献   

7.
The present study was carried out to develop an analytical method for simultaneously detecting and quantifying sulfoxaflor and its metabolites (X11721061, X11719474) in brown rice and rice straw using liquid chromatography–tandem mass spectrometry. The parent compound and its metabolites were extracted and purified using original ‘QuEChERS’ method with modification. The matrix-matched calibration curve of sulfoxaflor and its metabolites in both matrices achieved good linearity with determination coefficients (R2) ≥0.9944. The overall recoveries of sulfoxaflor at two fortification levels (rice: 0.2 and 1.0 mg/kg; rice straw: 0.4 and 2.0 mg/kg) ranged from 97.37% to 107.71% with relative standard deviations (RSDs) <5%. On the other hand, the recoveries of both metabolites (X11721061 and X11719474) at 0.1 and 0.5 mg/kg (rice) and 0.2 and 1.0 mg/kg (rice straw) were satisfactory with values ranging from 83.70 % to 112.60% with RSDs <8%. During storage at ?20°C, the analyte and its metabolites were stable for up to 87 days. The limits of quantification of 0.02 mg/kg were lower than the maximum residue limit (0.2 mg/kg) set by the Korean Ministry of Food and Drug Safety for brown rice. The method was successfully applied to paddy field treated with different programme schedules and a preharvest interval of 7 days was proposed based upon the current study. In sum, the developed method is accurate and reproducible for ensuring the reliable determination of sulfoxaflor (and its metabolites) in harvested rice grain and straw samples from the field. The residual level of parent compound does not seem to pose any hazardous effect and treated rice could be safely used for consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号