首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2017,29(10):2340-2347
This paper proposes the use of the boron‐doped diamond electrode (BDDE) in flow and batch injection analysis (FIA and BIA) systems with multiple‐pulse amperometric (MPA) detection for the determination of warfarin (WA) in pharmaceutical formulations. The electrochemical behavior of WA obtained by cyclic voltammetry (CV) in 0.1 mol L−1 phosphate buffer shows an irreversible oxidation process at +1.0 V (vs Ag/AgCl). The MPA was based on the application of two sequential potential pulses as a function of time on BDDE: (1) for WA detection at +1.2 V/100 ms and; (2) for electrode surface cleaning at −0.2 V/200 ms. Both hydrodynamic systems (FIA‐MPA and BIA‐MPA) used for WA determination achieved high precision (with relative standard deviations around 2 %, n =10), wide linear range (2.0−400.0 μmol L−1), low limits of detection (0.5 μmol L−1) and good analytical frequency (94 h−1 for FIA and 130 h−1 for BIA). The WA determination made by the proposed methods was compared to the official spectrophotometric method. The FIA‐MPA and BIA‐MPA methods are simple and fast, being an attractive option for WA routine analysis in pharmaceutical industries.  相似文献   

2.
A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human plasma. A 200 μL human plasma aliquot was spiked with a mixture of internal standards fludarabine and 5‐chlorouracil. A single‐step protein precipitation method was employed using 10% (v/v) trichloroacetic acid in water to separate analytes from bio‐matrices. Volumes of 20 μL of the supernatant were directly injected onto the HPLC system. Separation was achieved on a 30 × 2.1 mm Hypercarb (porous graphitic carbon) column using a gradient by mixing 10 mm ammonium acetate and acetonitrile–2‐propanol–tetrahydrofuran (1 : 3 : 2.25, v/v/v). The detection was performed using a Finnigan TSQ Quantum Ultra equipped with the electrospray ion source operated in positive and negative mode. The assay quantifies a range from 10 to 1000 ng/mL for capecitabine, from 10 to 5000 ng/mL for 5′‐DFCR and 5′‐DFUR, and from 50 to 5000 ng/mL for 5‐FU and FUH2 using a plasma sample of 200 μL. Correlation coefficients (r2) of the calibration curves in human plasma were better than 0.99 for all compounds. At all concentration levels, deviations of measured concentrations from nominal concentration were between ?4.41 and 3.65% with CV values less than 12.0% for capecitabine, between ?7.00 and 6.59% with CV values less than 13.0 for 5′‐DFUR, between ?3.25 and 4.11% with CV values less than 9.34% for 5′‐DFCR, between ?5.54 and 5.91% with CV values less than 9.69% for 5‐FU and between ?4.26 and 6.86% with CV values less than 14.9% for FUH2. The described method was successfully applied for the evaluation of the pharmacokinetic profile of capecitabine and its metabolites in plasma of treated cancer patients. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A quercetin monolayer has been prepared on top of the self‐assembled 3‐mercaptopropionic acid (MPA) layer for the copper ion determination. Cu2+ ions are readily accumulated on this modified electrode through the complex formation and electrochemically detected. With a quercetin layer, the redox process of Cu2+ became more reversible than at the MPA‐modified electrode. Complexation sites in MPA and quercetin were occupied within five min when the electrode was immersed in 10 μM Cu2+ solution. The MPA and quercetin layers were stable enough to allow repeated EDTA treatment to remove adsorbed Cu2+ for the surface regeneration. Only 7% decrease was found after ten times regeneration and use. Linear current response was found over the concentration range of 1 nM and 10 μM with detection limit of 0.1 nM. Common interfering ions such as Cd2+, Zn2+, and Fe2+/3+ did not show any electrochemical response in the potential range of Cu2+ determination.  相似文献   

4.
A liquid chromatographic–tandem mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of GDC‐0834 and its amide hydrolysis metabolite (M1) in human plasma to support clinical development. The method consisted of semi‐automated 96‐well protein precipitation extraction for sample preparation and LC‐MS/MS analysis in positive ion mode using TurboIonSpray® for analysis. D6‐GDC‐0834 and D6‐M1 metabolite were used as internal standards. A linear regression (weighted 1/concentration2) was used to fit calibration curves over the concentration range of 1 – 500 ng/mL for both GDC‐0834 and M1 metabolite. The accuracy (percentage bias) at the lower limit of quantitation (LLOQ) was 5.20 and 0.100% for GDC‐0834 and M1 metabolite, respectively. The precision (CV) for samples at the LLOQ was 3.13–8.84 and 5.20–8.93% for GDC‐0834 and M1 metabolite, respectively. For quality control samples at 3, 200 and 400 ng/mL, the between‐run CV was ≤7.38% for GDC‐0834 and ≤8.20% for M1 metabolite. Between run percentage bias ranged from ?2.76 to 6.98% for GDC‐0834 and from ?6.73 to 2.21% for M1 metabolite. GDC‐0834 and M1 metabolite were stable in human plasma for 31 days at ?20 and ?70°C. This method was successfully applied to support a GDC‐0834 human pharmacokinetic‐based study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
《Electroanalysis》2003,15(12):1054-1059
Epinephrine (EP) could exhibit an anodic peak at a bare gold electrode, but it was very insensitive. However, when the bare gold electrode was modified with 3‐mercaptopropionic acid (3MPA) self‐assembled monolayer (3MPA SAM), the peaks of EP became more reversible and sensitive due to the accumulation and mediate efficiency of 3MPA SAM. Conditions such as solution pH, concentration of supporting electrolyte and accumulation time were optimized. Under the selected conditions (i.e., 0.02 M pH 6.8 sodium phosphate buffer, accumulation time: 2 min under open‐ circuit.), the height of the anodic peak at about 0.18 V (vs. SCE) was linear to EP concentration in the range of 2×10?7 ?1×10?6 M and 1×10?6?5×10?4 M with correlation coefficient of 0.995 and 0.999, respectively. When the 3MPA/Au was further modified with cysteamine, the interference of H2O2 and BrO3? was eliminated. But the resulting electrode still suffered from the interference of ascorbic acid. This method was used to determine the content of EP in adrenaline hydrochloride injections, and the recovery was in the range of 97.0% to 105.1%.  相似文献   

6.
A sensitive, reliable and simple HPLC method was developed for the determination of lisinopril in human plasma. The method consists of extraction and clean‐up steps based on magnetic solid‐phase extraction and pre‐column derivatization with a fluorescent reagent. The mobile phase consisted of a mixture of methanol–sodium dihydrogen phosphate (pH 3.0; 0.005 m ; 75:25, v/v). The flow rate was set at 0.7 mL/min. Fluorescence detection was performed at 470nm excitation and 530nm emission wavelengths. Total chromatography run time was 5 min. The average extraction recovery of lisinopril and fluvoxamine (internal standard) was ≥82.8%. The limits of detection and quantification were determined as 1 and 3 ng/mL respectively. The method exhibited a linear calibration line over the concentration range of 3–1000 ng/mL with coefficient of determination (r2) of ≥0.98. The within‐run and between‐run precisions were satisfactory with values of CV of 1.8–12.8% (accuracy from 99.2 to 94.7%) and 2.4–13.7% (accuracy from 99.5 to 92.2%), respectively. These developments led to considerable improvement in method sensitivity and reliability. The method was validated according to the US Food and Drug Administration guidelines. Therefore, it can be considered as a suitable method for determination of lisinopril in plasma samples.  相似文献   

7.
Plasma samples were conventionally stored at freezing conditions until the time of detection. Such a technique, when carried out over an extended period, is energy consuming; in addition, preparation and transportation of stored samples is inconvenient. In this study, a freeze‐dried storage and preparation method was proposed to determine the presence of mycophenolic acid (MPA) in plasma. Fresh plasma samples were freeze‐dried using a device, and then stored at ambient temperature. After the stored samples were soaked with methanol spiked with the internal standard, high‐performance liquid chromatography was conducted to detect MPA. The proposed method was demonstrated to be precise and accurate over the linear range of 0.5–50 μg mL−1, with both intra‐ and inter‐day precision being <7% and biases <10%. The freeze‐dried samples were stable at ambient temperature for at least 40 days. This method was also successfully applied to the pharmacokinetic study of MPA in healthy volunteers. Pharmacokinetic parameters, such as maximum plasma concentration, time point of maximum plasma concentration and elimination half‐life, among others, were consistent with the results in the published study. This proposed technique was proved to be simple, reproducible and energy saving. This approach could also simplify the storage and analysis of samples in clinical and scientific drug research.  相似文献   

8.
Methyl salicylate‐2‐O‐β‐D‐lactoside (MSL), a natural salicylate derivative of Gaultheria yunnanensis (Franch.) Rehder (G. yunnanensis), has been shown to provide a beneficial anti‐inflammatory effect in animal models. Studies on the pharmacokinetics and bioavailability of MSL can provide both a substantial foundation for understanding its mechanism and empirical evidence to support its use in clinical practice. A simple and sensitive high‐performance liquid chromatography (HPLC) method, coupled with ultraviolet analyte detection, was developed for determining the concentration of MSL and its metabolite in beagle plasma. Chromatographic separation was achieved on a Agilent Zorbax SB‐C18 column (5 μm ,4.6 × 250 mm). The mobile phase consisted of aqueous solution containing 0.1% phosphoric acid and acetonitrile (82:90, v/v), at a flow rate of 1 mL/min. Validation of the assay demonstrated that the developed HPLC method was sensitive, accurate and selective for the determination of MSL and its metabolite in dog plasma. After orally administering three doses of MSL, it could no longer be detected in dog plasma and its metabolite, salicylic acid, was detected. Salicylic acid showed a single peak in the plasma concentration–time curves and linear pharmacokinetics following the three oral doses (r2 > 0.99). In contrast, only MSL was detected in plasma following intravenous administration. These results will aid in understanding the pharmacological significance of MSL. The developed method was successfully used for evaluation of the oral and intravenous pharmacokinetic profile of MSL in dogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A liquid chromatography–triple quadrupole mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of 5‐nitro‐5′‐hydroxy‐indirubin‐3′‐oxime (AGM‐130) in human plasma to support a microdose clinical trial. The method consisted of a liquid–liquid extraction for sample preparation and LC‐MS/MS analysis in the positive ion mode using TurboIonSprayTM for analysis. d3‐AGM‐130 was used as the internal standard. A linear regression (weighted 1/concentration) was used to fit calibration curves over the concentration range of 10–2000 pg/mL for AGM‐130. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 96.6% with a precision (coefficient of variation, CV) of 4.4%. For quality control samples at 30, 160 and 1600 pg/mL, the between run CV was ≤5.0 %. Between‐run accuracy ranged from 98.1 to 101.0%. AGM‐130 was stable in 50% acetonitrile for 168 h at 4°C and 6 h at room temperature. AGM‐130 was also stable in human plasma at room temperature for 6 h and through three freeze–thaw cycles. The variability of selected samples for the incurred sample reanalysis was ≤12.7% when compared with the original sample concentrations. This validated LC‐MS/MS method for determination of AGM‐130 was used to support a phase 0 microdose clinical trial. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
《Analytical letters》2012,45(13):2465-2475
Abstract

A simple HPLC method with ultraviolet detection for simultaneous determination of Mycophenolic acid (MPA), its phenol glucuronide metabolite (MPAG) and acyl‐MPAG (AcMPAG) in human plasma was established. The plasma samples were prepared with protein‐preciptaing reagent, and the supernatant was eluted on Zorbax column (250 mm×4.6 mm i.d, 5 µm) with 20 mmol/l NaH2PO4 buffer (pH 3.0, adjusted with 20% phosphoric acid) and methanol (45:55, v/v) at 304 nm. The column temperature was 45°C, and the flow rate was 1.2 ml/min. The assay was linear within the range of 0.2–50 µg/L for MPA (r=0.9997), 2.8–531 µg/L for MPAG (r=0.9999), and 0.3–24 µg/L for AcMPAG (r=0.9994). Mean absolute recovery of MPA and its metabolites and internal standard was >80%. The average recoveries of MPA, MPAG, and AcMPAG were 94.0–101.4, 98.4–101.9, and 96.1–104.2%, respectively. The RSD of within‐day and between‐day were all lower than 15%. The method described is sensitive, reproducible, and will be useful in TDM or pharmacokinetic studies of MPA.  相似文献   

11.
A high‐throughput, sensitive, and rugged liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the rapid quantitation of β ‐hydroxy‐β ‐methylbutyrate (HMB) in human plasma has been developed and validated for routine use. The method uses 100 μL of plasma sample and employs protein precipitation with 0.1% formic acid in methanol for the extraction of HMB from plasma. Sample extracts were analyzed using LC–MS/MS technique under negative mode electrospray ionization conditions. A 13C–labeled stable isotope internal standard was used to achieve accurate quantitation. Multiday validation was conducted for precision, accuracy, linearity, selectivity, matrix effect, dilution integrity (2×), extraction recovery, freeze–thaw sample stability (three cycles), benchtop sample stability (6 h and 50 min), autosampler stability (27 h) and frozen storage sample stability (146 days). Linearity was demonstrated between 10 and 500 ng/mL. Inter‐day accuracies and coefficients of variation (CV) were 91.2–98.1 and 3.7–7.8%, respectively. The validated method was proven to be rugged for routine use to quantify endogenous levels of HMB in human plasma obtained from healthy volunteers.  相似文献   

12.
The aim of this study was to develop and validate fully the liquid chromatography–tandem mass spectrometry method for free mycophenolic acid (MPA) concentration measurements in plasma ultrafiltrate that will be reliable and simple in preparation with deuterated MPA (MPA‐d3) chosen as an internal standard. The chromatographic separation was made with Zorbax Eclipse XDB‐C18 column (4.6 × 150 mm) using a gradient of two solutions as a mobile phase: (A) water and (B) methanol, each containing 0.1% formic acid and 2.5 mm ammonium acetate. Satisfactory repeatability of retention times was achieved with average values of 7.54 ± 0.20 min and 7.50 ± 0.19 min for MPA and MPA‐d3, respectively. The method was selective, with no carry‐over or matrix effect observed. The analytical range was proven for MPA ultrafiltrate concentrations of 1–500 ng/mL. The accuracy and precision fell within the acceptance criteria for intraday (accuracy: 100.63–110.46%, imprecision: 6.23–7.76%), as well as interday assay (accuracy: 98.81–110.63%; imprecision: 5.36–10.22%). The method was used for free MPA determination in plasma samples from patients treated with mycophenolate mofetil. To the best of our knowledge this is the first liquid chromatography–tandem mass spectrometry method for free MPA monitoring using MPA‐d3 that allows to measure plasma ultrafiltrate concentrations as low as 1 ng/mL.  相似文献   

13.
A novel, sensitive and selective ultra‐high‐performance liquid chromatography–electrospray ionization mass spectrometry method was developed and validated for the quantification of acotiamide (ACT), a first‐in‐class drug used in functional dyspepsia, in rat plasma. A simple protein precipitation method with acetonitrile as precipitating solvent was used to extract ACT from rat plasma. ACT and an internal standard (mirabegron, IS) were separated on an Agilent poroshell EC C18 column (50 × 3.0 mm, 2.7 µm) using methanol–10 mM ammonium acetate binary gradient mobile phase at a flow rate of 0.4 mL/min over 4 min run time. Detection was performed using target ions of [M + H]+ at m/z 451.2010 for ACT and m/z 397.1693 for IS in selective ion mode. The method was validated in the calibration range of 1.31–1000 ng/mL. All the validation parameters were well within the limits. The method demonstrated good performances in terms of intra‐ and inter‐day precision (3.27–12.60% CV) and accuracy (87.96–104.94%). Thus the present ultra‐high‐pressure liquid chromatograhy–high‐resolution mass spectrometry method for determination of ACT in rat plasma, is highly sensitive and rapid with a short run‐time of 4 min, can be suitable for high sample throughput and for large batches of biological samples in pharmacokinetic studies. This method can be extended to measure plasma concentrations of ACT in humans to understand drug metabolism, drug interaction and adverse effects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, voltammetric determination of hydrazine was investigated by 1‐amino‐2‐naphtol‐4‐sulfonic acid (ANSA) at the surface of carbon paste electrode (CPE) using cyclic voltammetry (CV) and double potential step chronoamperometry. Results showed that in pH 7.00, hydrazine participates in Michael addition reaction with ANSA and the anodic peak potential of hydrazine shifted to 726 mV less positive than CPE in absence of ANSA, this value is unique compared with other research works. Also, the value of rate constant for the oxidation of hydrazine was calculated 8.3 × 104 cm3 mol‐1 s‐1 and the diffusion coefficient of ANSA at the surface of CPE was determined 7.3 × 10‐7 cm2 s‐1. A linear correlation between Ip and hydrazine concentration in the ranges, from 5 × 10‐5 mol/L to 2.5 × 10‐2 mol/L with CV method was obtained and the detection limit was found as 4.3 × 10‐5 mol/L.  相似文献   

15.
The formation of an inclusion complex of the proton‐pump inhibitor (PPI) drug esomeprazole (ESO) with ß‐cyclodextrin (ß‐CD) has been investigated and proven by cyclic voltammetry (CV). The formation constant of the complex was determined. Thereafter, an electropolymerized β‐CD and L‐arginine (L‐arg) modified screen printed carbon electrode (P‐β‐CD‐L‐arg/SPCE) was developed for the determination of ESO using differential pulse adsorptive stripping voltammetry (DPAdSV). A significant enhancement of the peak current was observed when applying an accumulation step due to the effect of adsorption. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) further indicated that the polymer of β‐CD and L‐arg efficiently improved the electron transfer kinetic between analyte and electrode surface. Under the optimized conditions, the oxidation peak current was linearly proportional to the concentration of the drug in the range of 1.0×10?8 to 1.0×10?5 M. The DPAdSV method was successfully used to determine the concentrations of the drug in spiked human serum samples.  相似文献   

16.
An expanded graphite‐epoxy composite electrode (EG‐Epoxy) was employed for the simultaneous determination of 4‐chlorophenol (4‐CP) and oxalic acid (OA) by using cyclic voltammetry (CV), chronoamperometry (CA), and differential pulse voltammetry (DPV). The results indicated that OA could be determined in the presence of the same concentrations of 4‐CP within the concentration range of 0.1 mM to 0.5 mM with a relative standard deviation (RSD) smaller than 5%. Electrode fouling occurred during CA for 4‐CP concentrations larger than 0.5 mM. The DPV method was used for the simultaneous determination of 4‐CP and OA before and after electrochemical oxidation by chronopotentiometry under galvanostatic conditions (j=0.04 mA cm?2, t=2 h) of a tap water sample spiked with 0.19 mM 4‐CP and 0.1 M Na2SO4.  相似文献   

17.
A specific and rapid liquid chromatography–tandem mass spectrometry method is proposed for the simultaneous determination of metformin (MET), saxagliptin (SAXA) and its active metabolite, 5‐hydroxy saxagliptin (5‐OH SAXA) in human plasma. Sample preparation was accomplished from 50 μL plasma sample by solid‐phase extraction using sodium dodecyl sulfate as an ion‐pair reagent. Reversed‐phase chromatographic resolution of analytes was possible within 3.5 min on ACE 5CN (150 × 4.6 mm, 5 μm) column using acetonitrile and10.0 mm ammonium formate buffer, pH 5.0 (80:20, v /v) as the mobile phase. Triple quadrupole mass spectrometric detection was performed using electrospray ionization in the positive ionization mode. The calibration curves showed good linearity (r 2 ≥ 0.9992) over the established concentration range with limit of quantification of 1.50, 0.10 and 0.20 ng/mL for MET, SAXA and 5‐OH SAXA respectively. The extraction recoveries obtained from spiked plasma samples were highly consistent for MET (75.12–77.84%), SAXA (85.90–87.84%) and 5‐OH SAXA (80.32–82.69%) across quality controls. The validated method was successfully applied to a bioequivalence study with a fixed‐dose formulation consisting of 5 mg SAXA and 500 mg MET in 18 healthy subjects. The reproducibility of the assay was demonstrated by reanalysis of 87 incurred samples.  相似文献   

18.
A liquid chromatographic–electrospray ionization–time‐of‐flight/mass spectrometric (LC‐ESI‐TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro‐elution solid‐phase extraction (SPE) for sample preparation and LC‐ESI‐TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro‐elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration2), with the equation y = ax2 + bx + c was used to fit calibration curves over the concentration range of 3.02–2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within‐run and the between‐run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC‐ESI‐TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma.  相似文献   

19.
A reliable high‐throughput ultra‐high performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated for oleanolic acid (OA) determination in rat plasma and liver tissue using glycyrrhetic acid as the internal standard (IS). Plasma and liver homogenate samples were prepared using solid‐phase extraction. Chromatographic separation was achieved on a C18 column using an isocratic mobile phase system. The detection was performed by multiple reaction monitoring mode via positive electrospray ionization interface. The calibration curves showed good linearity (R2 > 0.9997) within the tested concentration ranges. The lower limit of quantification for plasma and liver tissue was ≤0.75 ng/mL. The intra‐ and inter‐day precision and accuracy deviations were within ±15% in plasma and liver tissue. The mean extraction recoveries ranged from 80.8 to 87.0%. In addition, the carryover, matrix effect, stability and robustness involved in the method were also validated. The method was successfully applied to the plasma and hepatic pharmacokinetics of OA after oral administration to rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, GC–MS‐ and MEKC‐based methods for determination of caffeine (CAF) in preworkout supplements were developed and validated. The proposed protocols utilized minimal sample preparation (simple dilution and syringe filtration). The developed methods achieved satisfactory validation parameters, i.e. good linearity (R2 > 0.9988 and R2 > 0.9985 for GC–MS‐ and MEKC‐based method, respectively), satisfactory intra‐ and interaccuracy (within 92.6–100.7% for method utilizing GC–MS and 92.1–110.3% for protocol based on MEKC) and precision (CV < 15.9% and CV < 6.3% for GC–MS‐ and MEKC‐based method, respectively) and recovery (within 100.1–100.8% for method utilizing GC–MS and 101.5–106.2% for protocol based on MEKC). The LOD was 0.03 and 3 μg/mL for method utilizing GC–MS and MEKC, respectively. The CAF concentrations determined by GC–MS‐ and MEKC‐based methods were found to be in the range of 8.53–11.23 and 8.20–11.61 μg/mL, respectively. Taking into consideration information on the labels, the investigated supplements were found to contain from 110.0 to 167.3% of the declared CAF content, which confirmed the literature reports on incompatibility of the declared product compositions with real ones. Nevertheless, the consumption of examined supplements as recommended by producers did not lead to exceeding the CAF safe limit of 400 mg per day. Additionally, the MEKC‐based method allowed for detection and identification of vitamin B3 and B6 in all of the investigated supplement samples, which demonstrated that MEKC‐based protocols may be an appropriate assays for simultaneous determination of CAF and vitamins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号