首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
In this review, we consider green chemistry metrics, related software tools, and the opportunities and challenges for their use in research laboratories. We provide an overview of state-of-the-art software designed both to aid researchers in planning and conducting chemical experiments and to assess sustainability of individual reactions and synthetic routes. The increasing digitalisation of research means that there is great opportunity for more extensive use of computational tools by synthetic chemists and for closer integration of green chemistry principles into the routine work of chemical laboratories. We discuss the scope for using software tools in the laboratory and assisting synthetic chemists in the adoption of green and sustainable chemistry approaches that are suitable for their specific purposes.  相似文献   

2.
Navjeet Kaur 《合成通讯》2018,48(11):1259-1284
The chemists have been interested in light as an energy source to induce chemical reactions since the beginning of scientific chemistry. This review summarizes the chemistry of photochemical reactions with emphasis of their synthetic applications. The organic photochemical reactions avoid the polluting or toxic reagents and therefore offer perspectives for sustainable processes and green chemistry. In summary, this review article describes the synthesis of a number of five-membered N-heterocycles.  相似文献   

3.
Microwave reactions under continuous flow conditions   总被引:1,自引:0,他引:1  
Microwave chemistry has already impacted significantly on the everyday synthesis of organic molecules. The adoption and integration of this liberating technology has permitted a resurrection of many synthetic transformations that were previously considered too extreme in their conditions (temperatures, pressures, reaction times) to be synthetically useful. Furthermore, whole arrays of additional chemical transformations have been devised under microwave heating that allow access to more diverse chemical architectures via more expedient routes. Continuous flow processing of chemical intermediates taking advantage of the unique heating mechanism and characteristics of microwave irradiation will certainly be the next evolutionary step forward in this area. The synergistic combination afforded by the simultaneous application of these two core processing tools will enhance still further the synthetic capabilities of tomorrow's chemists. This short review aims to highlight the current developments and future potential offered by continuous flow microwave mediated synthesis.  相似文献   

4.
Alkyl enol ethers (AEE) are versatile synthetic intermediates with a unique reactivity pattern. This review article summarizes the synthesis of AEE as well as its reactivity and how enol ether undergoes intermolecular reactions for various bond formation, leading to the construction of several useful organic molecules. The synthetic applications of alkyl enol ethers towards intermolecular bond-forming reactions include metal-catalyzed reactions, cycloaddition and heterocycle formation as well as rwactions in the field of natural products synthesis. The achievement of these impressive transformations prove the countless synthetic potential of AEE. The main objective of this review is to bring attentiveness among synthetic chemists to show how AEE extensively can be used to react with both electrophiles as well as nucleophiles, thereby behaving as an ambiphilic reactant. We trust that the unique reactivity pattern of alkyl enol ethers and the fundamental mechanistic idea can attract chemists in AEE chemistry. Exclusively, intermolecular reactions of AEE with other functionalized moieties have not been reviewed to the best of our knowledge.  相似文献   

5.
Triazenes (RN=N-NR'R") are a class of compounds that hold much promise in preparative chemistry as they are reactive groups which are both stable and adaptable to numerous synthetic transformations. Useful to scientists in pharmacology, total synthesis, polymer technology, and the construction of novel ring systems, to name a few areas, triazenes also have a tendency to surprise chemists with new reactions and increasing applicability. This review highlights some of the recent advances and diversity possible with these types of systems.  相似文献   

6.
The use of open-access mass spectrometry to monitor synthetic chemistry reactions, and also the integrity and purity of new chemical entities, has been a part of the medicinal chemist's tool-box for more than 5 years. Originally in our group at Wyeth Research there were two open-access methods available to the chemists, flow injection analysis (FIA) and liquid chromatography/mass spectrometry (LC/MS). The FIA method was approximately 3 min long, while the LC/MS method was approximately 20 min long (including an 8 min gradient). Within the first 2 years, the total number of open-access analyses increased by approximately 125%. It is interesting, however, that the number of LC/MS analyses increased by more than 285%. This is attributed to the fact that the chemists began using the LC/MS data to monitor reactions and also to check final product integrity and purity. In addition, the number of chemists performing parallel synthesis reactions has increased; thus, individual chemists can produce sample sets of up to 100 vials. This paper describes the implementation of new methodology, which accommodates the need for much faster run times and also the ability to acquire alternating positive and negative ion spectra within the same run. In addition, the instrument has been configured to e-mail the resulting processed data report to the submitting chemist. Several methods have been developed, including structure elucidation using in-source collision-induced dissociation (CID) and night-time analysis. The LC/MS methods for this system are described herein and are applicable to both industrial and academic synthetic chemistry optimization efforts.  相似文献   

7.
Photochemical transformations of molecular building blocks have become an important and widely recognized research field in the past decade. Detailed and deep understanding of novel photochemical catalysts and reaction concepts with visible light as the energy source has enabled a broad application portfolio for synthetic organic chemistry. In parallel, continuous-flow chemistry and microreaction technology have become the basis for thinking and doing chemistry in a novel fashion with clear focus on improved process control for higher conversion and selectivity. As can be seen by the large number of scientific publications on flow photochemistry in the recent past, both research topics have found each other as exceptionally well-suited counterparts with high synergy by combining chemistry and technology. This review will give an overview on selected reaction classes, which represent important photochemical transformations in synthetic organic chemistry, and which benefit from mild and defined process conditions by the transfer from batch to continuous-flow mode.  相似文献   

8.
Since Gomberg's discovery of radicals as chemical entities, the interest around them has increased through the years. Nowadays, radical chemistry is used in the synthesis of 75% of all polymers, inevitably establishing a close relationship with Solid-Phase Organic Synthesis. More recently, the interest of organic chemists has shifted towards the application of usual "in-solution" radical chemistry to the solid-phase, ranging from the use of supported reagents for radical reactions, to the development of methodologies for the synthesis of small molecules or potential libraries. The aim of this review is to put in perspective radical chemistry, moving it away from its origin as a synthetic means for solid supports, to becoming a useful tool for the synthesis of small molecules.  相似文献   

9.
Natural products are often attractive and challenging targets for synthetic chemists, and many have interesting biological activities. However, synthetic chemists need to be more than simply suppliers of compounds to biologists. Therefore, we have been seeking ways to actively apply organic synthetic methods to chemical biology studies of natural products and their activities. In this personal review, I would like to introduce our work on the development of new biologically active compounds inspired by, or extracted from, the structures of natural products, focusing on enhancement of functional activity and specificity and overcoming various drawbacks of the parent natural products.  相似文献   

10.
One of the most important name reactions in organic chemistry, is the Diels‐Alder cycloaddition reaction. It is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile to construct a substituted cyclohexene derivative. It is the stereotypical example of a pericyclic reaction with a concerted mechanism. In synthesis, the use of electricity instead of stoichiometric amounts of oxidant or reducing agents is definitely appealing for economic, ecological and selective, reasons. In this review, we try to underscore the combination of the electrosynthesis with Diels‐Alder cycloaddition reaction to establish of a powerful synthetic tool which may encourage synthetic organic chemists to use it in the future.  相似文献   

11.
Organic-chemical synthesis has always fascinated chemists and will not lose its importance in the future. It is a truism that all chemists—and others too—are dependent on the synthesis of those compounds with which they want to work. As a result, organic-chemical synthesis today is more than ever before the cutting edge of organic chemistry, biology, biochemistry, medicine, physics, and material science. Synthesis is also the basis of the chemical industry. For the passionate synthetic chemist, however, synthesis is much more than just a method for obtaining compounds; it is the expression of his creativity, intelligence, ability, and also his perseverance.  相似文献   

12.
Will microreactors replace the round‐bottomed flask to perform chemical reactions in the near future? Recent developments in the construction of microstructured reaction devices and their wide‐ranging applications in many different areas of chemistry suggest that they can have a significant impact on the way chemists conduct their experiments. Miniaturizing reactions offers many advantages for the synthetic organic chemist: high‐throughput scanning of reaction conditions, precise control of reaction variables, the use of small quantities of reagents, increased safety parameters, and ready scale‐up of synthetic procedures. A wide range of single‐ and multiphase reactions have now been performed in microfluidic‐based devices. Certainly, microreactors cannot be applied to all chemistries yet and microfluidic systems also have disadvantages. Limited reaction‐time range, high sensitivity to precipitating products, and new physical, chemical, and analytical challenges have to be overcome. This concept article presents an overview of microfluidic devices available for chemical synthesis and evaluates the potential of microreactor technology in organic synthesis.  相似文献   

13.
This review described the synthetic methods, chemical reactivity and biological applications of furan carboxamide compounds. Furan-carboxamides are reported to have important and variable biological properties. The aim of this review is to highlight the chemistry and biological importance of this class of bioactive compounds. The basic sections covers: structure studies, synthetic methods pathways, synthesis of different heterocycles, reactions and biological applications. The reactions mechanisms of the unexpected products are discussed. The present study covers all the published work on the furan-carboxamides until now.  相似文献   

14.
Organic chemists and metabolic engineers use orthogonal technologies to construct essential small molecules such as pharmaceuticals and commodity chemicals. While chemists have leveraged the unique capabilities of biological catalysts for small‐molecule production, metabolic engineers have not likewise integrated reactions from organic synthesis with the metabolism of living organisms. Reported herein is a method for alkene hydrogenation which utilizes a palladium catalyst and hydrogen gas generated directly by a living microorganism. This biocompatible transformation, which requires both catalyst and microbe, and can be used on a preparative scale, represents a new strategy for chemical synthesis that combines organic chemistry and metabolic engineering.  相似文献   

15.
Asymmetric transfer hydrogenation: chiral ligands and applications   总被引:2,自引:0,他引:2  
Hydrogen transfer reduction processes are attracting increasing interest from synthetic chemists in view of their operational simplicity and high selectivity. In this tutorial review the most significant advances recently achieved in the stereoselective reduction of unsaturated organic compounds catalyzed by homogeneous transition metal complexes are critically reviewed. A sharp growth of the synthetic applications of this technique in the synthesis of fine chemicals is predictable as the use of transition metal catalyzed reactions will become more familiar to synthetic chemists.  相似文献   

16.
Until now, microreaction devices designed for a specific type of reaction were used mainly for highly exothermic, very fast reactions. Described is a modular microreaction system and its application to representative homogeneous and heterogeneous reactions important in organic synthesis. The modular microreaction system allows continuous flow processes to be optimized and employed effectively in the chemical laboratory. The modular microreaction systems proved also versatile for syntheses requiring moderate reaction times, thus extending their application to a large fraction of organic reactions. The use of the modular and cleanable microreaction systems to rapidly develop optimized reaction conditions provides an excellent basis for the development of many chemical transformations scalable from milligram to ton production quantities.  相似文献   

17.
本文综述了中国大陆地区有机化学研究人员2011至2012年两年内在合成方法学、有机合成化学、元素有机化学以及天然产物化学等领域获得的重要成果。文章中共引用参考文献355篇,其中110多篇手性金属配合物和有机小分子催化的不对称反应、金属催化的碳氢键活化等合成方法学论文和30余篇氟有机化学论文基本来源于德国《应用化学》(国际版)和《美国化学杂志》。本文汇集了中国有机化学家两年中合成的150多个具有生物活性和化学结构多样性的天然产物,其中不乏具有高度挑战性的复杂天然分子。在近两年中中国有机化学家从陆地和海洋的生物体内发现各种不同类型新天然产物90多个。  相似文献   

18.
Among the fundamental transformations in the field of synthetic organic chemistry, transition-metal-catalyzed reactions provide some of the most attractive methodologies for the formation of C-C and C-heteroatom bonds. As a result, the application of these reactions has increased tremendously during the past decades and cross-coupling reactions became a standard tool for synthetic organic chemists. Furthermore, a tremendous upsurge in the development of new catalysts and ligands, as well as an increased understanding of the mechanisms, has contributed substantially to recent advances in the field. Traditionally, organic reactions are carried out by conductive heating with an external heat source (for example, an oil bath). However, the application of microwave irradiation is a steadily gaining field as an alternative heating mode since its dawn at the end of the last century. This tutorial review focuses on some of the recent developments in the field of cross-coupling reactions assisted by microwave irradiation.  相似文献   

19.
21世纪理论化学的挑战和机遇   总被引:14,自引:1,他引:14  
徐光宪 《结构化学》2002,21(5):463-469
本文是2002年7月在长春召开的第八届全国量子化学学术会议上的大会发言。内容如下:(1)20世纪的化学取得了辉煌的成就,应该获得社会的认同。(2)20世纪发明了七大技术,第一是合成化学技术。(3)21世纪的化学面临四大难题,期待我们去解决。(4)理论化学家应该深入交叉学科领域,拓展研究阵地。  相似文献   

20.
The use of transition-metal complexes as reagents for the synthesis of complex organic compounds has been under development for at least several decades, and many extraordinary organic transformations of profound potential have been realized. However, adoption of this chemistry by the practicing synthetic organic chemist has been inordinately slow, and only now are transition-metal reagents beginning to achieve their rightful place in the arsenal of organic synthesis. Several factors contributed to the initial reluctance of synthetic organic chemists to use organometallic reagents. Lacking education and experience in the ways of elements having d electrons, synthetic chemists viewed organometallic processes as something mysterious and unpredictable, and not to be discussed in polite society. Organometallic chemists did not help matters by advertising their latest advances as useful synthetic methodology, but restricting their studies to very simple organic systems lacking any serious functionality (e.g., the “methyl, ethyl, butyl, futile” syndrome). Happily, things have changed. Organometallic chemists have turned their attention to more complex systems, and more recently trained organic chemists have benefited from exposure to the application of transition metals. This combination has set the stage for major advances in the use of transition metals in the synthesis of complex organic compounds. This review deals with one aspect of this area, the use of transition metals in the synthesis of indoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号