首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β‐Asarone (BAS), a phenylpropanoid from Acorus calamus Linn., has shown biological effects in the management of cognitive impairment conditions such as Alzheimer's disease. The present paper describes a selective and sensitive liquid chromatography–tandem mass spectrometric method (HPLC‐MS/MS) using electrospray ionization source (ESI) for quantification of BAS in rat plasma. Briefly, the plasma samples were pre‐treated using a simple solid‐phase extraction method. The separation of BAS and the internal standard, caffeine, was achieved on an Agilent Zorbax XDB C18 column (50 × 2.1 mm i.d., 5 µm) using 0.2 mL/min isocratic mobile phase flow. The detection was performed using an Applied Biosystems Hybrid Q‐Trap API 2000 mass spectrometer equipped with an ESI source operated in positive mode. Also, the developed bioanalytical method was validated as per the US FDA bioanalytical guidelines over the concentration range of 9.79–4892.50 ng/mL (r2 ≥ 0.9951) for BAS from rat plasma. The mean percentage recovery (n = 3) for the low, middle and high quality control samples was 86.92 ± 3.89, 85.30 ± 1.09 and 87.24 ± 4.03%, respectively. The applicability of the validated HPLC‐MS/MS method was demonstrated by successful measurement of BAS from plasma following oral administration of Acorus calamus rhizome extracts to three female albino Wistar rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Four co‐eluting components, with experimentally measured Mr of 23 658, 23 786, 24 278 and 24 406 Da, were detected by reversed‐phase high‐performance liquid chromatography (RP‐HPLC) and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) analysis in the dephosphorylated casein fraction of a milk sample collected at middle lactation stage from an individual donkey belonging to the Ragusano breed. By coupling RP‐HPLC, two‐dimensional polyacrylamide gel electrophoresis (2D‐PAGE), enzymatic digestions, MALDI‐TOF MS and capillary RP‐HPLC/nano‐electrospray ionization tandem mass spectrometry (nESI‐MS/MS) analyses, the four components were identified as donkey's αs1‐CNs and their sequences completely characterized, using the known mare's αs1‐CN (GenBank Acc. No. AAK83668; Mr 23750.7 Da) as reference. The proteins with Mr of 23 786 and 23 658 Da differ in the presence of a glutamine residue at position 83 in the full‐length component and present the amino acid substitutions Q8→H and H115→Y with respect to the mare's αs1‐CN. The other two components with Mr 24 406 and 24 278 Da, which also differ in the presence of a glutamine residue at position 88 in the full‐length component, show the insertion of the pentapeptide HTPRE between Leu33 and the Glu34. The two αs1‐CNs bearing the pentapeptide insertion were named variants A (202 amino acids; Mr 24 406) and A1 (201 amino acids; Mr 24 278), whereas the two αs1‐CNs without the pentapeptide were named variants B (197 amino acids; Mr 23 786) and B1 (196 amino acids; Mr 23 658). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
3,6′‐Disinapoylsucrose (DSS), a major active component of traditional Chinese medicine Yuan‐Zhi (the roots of Polygala tenuifolia), has significant effects for neuroprotection and improving learning memory. In order to explore the pharmacokinetic properties of DSS so as to further understand its in vivo activities, a sensitive LC‐MS/MS method was developed for determination of DSS in rat plasma and applied to a pharmacokinetic study in the present study. After treatment by protein precipitation, the plasma sample was separated on a C18 HPLC column and analyzed by a mass spectrometry under positive electrospray ionization. Multiple‐reaction monitoring was employed to measure the ion transition at m/z 777.4 → 409.2 for DSS and m/z 557.2 → 309.1 for forsythin as internal standard. The method was linear over the studied concentration range of 0.5–1000.0 ng/mL. The precision and accuracy ranged from 1.4 to 18.4%, and from ?3.7 to ?9.5%, respectively, for within‐day and between‐day assay. Extraction recovery was higher than 86.6%. The limits of detection and quantification were 0.3 and 0.5 ng/mL, respectively. The present method was successfully applied to a pharmacokinetic study. DSS was found to have poor oral absorption with only about 0.5% bioavailability. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This study is the first to detail the development and validation of a rapid, sensitive and specific LC‐ESI‐MS/MS method for the determination of eriodictyol‐8‐C‐β‐d ‐glucopyranoside (EG) in rat plasma. A simple protein precipitation method was used for plasma sample preparation. Chromatographic separation was successfully achieved on an Agilent Zorbax XDB C18 column (2.1 × 50 mm, 3.5 µm) using a step gradient program with the mobile phase of 0.1% formic acid aqueous solution and acetonitrile with 0.1% formic acid. EG and the internal standard (IS) were detected using an electrospray negative ionization mass spectrometry in the multiple reaction monitoring mode. This method demonstrated good linearity and did not show any endogenous interference with the active compound and IS peaks. The lower limit of quantification of EG was 0.20 ng/mL in 50 μL rat plasma. The average recoveries of EG and IS from rat plasma were both above 80%. The inter‐day precisions (relative standard deviation) of EG determined over 5 days were all within 15%. The present method was successfully applied to a quantification and bioavailability study of EG in rats after intravenous and oral administration. The oral absolute bioavailability of EG in rats was estimated to be 7.71 ± 1.52%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method is described for the simultaneous determination of silodosin (SLD) and its active metabolite silodosin β‐d ‐glucuronide (KMD‐3213G) in human plasma. Liquid–liquid extraction of plasma samples was carried out with ethyl acetate and methyl tert‐butyl ether solvent mixture using deuterated analogs as internal standards. The extraction recoveries of SLD and KMD‐3213G were in the ranges 90.8–93.4 and 87.6–89.9%, respectively. The extracts were analyzed on a Symmetry C18 (50 × 4.6 mm, 5 μm) column under gradient conditions using 10 mm ammonium formate in water and methanol–acetonitrile (40:60, v/v), within 6.0 min. For MS/MS measurements, ionization of the analytes was carried out in the positive ionization mode and the transitions monitored were m/z 496.1 → 261.2 for SLD and m/z 670.2 → 494.1 for KMD‐3213G. The method showed good linearity, accuracy, precision and stability in the range 0.10–80.0 ng/mL for SLD and KMD‐3213G. The IS‐normalized matrix factors obtained were highly consistent, ranging from 0.962 to 1.023 for both analytes. The method was used to support a bioequivalence study of SLD and its metabolite in healthy volunteers after oral administration of 8 mg silodosin capsules.  相似文献   

7.
8.
A sensitive and specific LC–MS/MS assay for determination of β ‐eudesmol in rat plasma was developed and validated. After liquid–liquid extraction with ethyl ether , the analyte and IS were separated on a Capcell Pak C18 column (50 × 2.0 mm, 5 μm) by isocratic elution with acetonitrile—water–formic acid (77.5:22.5:0.1, v /v/v) as the mobile phase at a flow rate of 0.4 mL/min. An ESI source was applied and operated in positive ion mode; a selected reaction monitoring scan was used for quantification by monitoring the precursor–product ion transitions of m/z 245.1 → 163.1 for β ‐eudesmol and m/z 273.4 → 81.2 for IS. Good linearity was observed in the concentration range of 3–900 ng/mL for β ‐eudesmol in rat plasma. Intra‐ and inter‐day precision and accuracy were both within ±14.3%. This method was applied for pharmacokinetic studies after intravenous bolus of 2.0 mg/kg or intragastric administration of 50 mg/kg β ‐eudesmol in rats.  相似文献   

9.
A rapid and sensitive LC–MS/MS method with good accuracy and precision was developed and validated for the pharmacokinetic study of quercetin‐3‐O‐β‐d ‐glucopyranosyl‐7‐O‐β‐d ‐gentiobioside (QGG) in Sprague–Dawley rats. Plasma samples were simply precipitated by methanol and then analyzed by LC–MS/MS. A Venusil® ASB C18 column (2.1 × 50 mm, i.d. 5 μm) was used for separation, with methanol–water (50:50, v/v) as the mobile phase at a flow rate of 300 μL/min. The optimized mass transition ion‐pairs (m/z) for quantitation were 787.3/301.3 for QGG, and 725.3/293.3 for internal standard. The linear range was 7.32–1830 ng/mL with an average correlation coefficient of 0.9992, and the limit of quantification was 7.32 ng/mL. The intra‐ and inter‐day precision and accuracy were less than ±15%. At low, medium and high quality control concentrations, the recovery and matrix effect of the analyte and IS were in the range of 89.06–92.43 and 88.58–97.62%, respectively. The method was applied for the pharmacokinetic study of QGG in Sprague–Dawley rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive and selective liquid chromatography–tandem mass spectrometric (LC–MS/MS) assay method has been developed and validated for the enantioselective determination of manidipine in human plasma using isotope‐labeled compounds as internal standards. After solid‐phase extraction, R ‐(−)‐manidipine and S ‐(+)‐manidipine were chromatographed on a Chiralpack IC‐3 C18 column using a isocratic mobile phase composed of 2 mm ammonium bicarbonate and acetonitrile (15:85, v /v). The precursor ion to product ion transitions for the enantiomers and internal standards were monitored in the multiple reaction monitoring and positive ionization mode using an API‐4000 mass spectrometer. The method was linear over the concentration range of 0.05–10.2 ng/mL for both enantiomers. The precision and accuracy results over five concentration levels in five different batches were well within the acceptance limits. The mean extraction recovery was >80% for both enantiomers. A variety of stability tests were executed in plasma and in neat samples, which complies with the FDA guidelines. After complete validation, the method was successfully applied to a pharmacokinetic study of a manidipine 20 mg oral dose in 10 healthy South India subjects under fasting conditions. The assay reproducibility is shown through incurred samples reanalysis of 20 subject plasma samples.  相似文献   

11.
A high‐throughput, sensitive, and rugged liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the rapid quantitation of β ‐hydroxy‐β ‐methylbutyrate (HMB) in human plasma has been developed and validated for routine use. The method uses 100 μL of plasma sample and employs protein precipitation with 0.1% formic acid in methanol for the extraction of HMB from plasma. Sample extracts were analyzed using LC–MS/MS technique under negative mode electrospray ionization conditions. A 13C–labeled stable isotope internal standard was used to achieve accurate quantitation. Multiday validation was conducted for precision, accuracy, linearity, selectivity, matrix effect, dilution integrity (2×), extraction recovery, freeze–thaw sample stability (three cycles), benchtop sample stability (6 h and 50 min), autosampler stability (27 h) and frozen storage sample stability (146 days). Linearity was demonstrated between 10 and 500 ng/mL. Inter‐day accuracies and coefficients of variation (CV) were 91.2–98.1 and 3.7–7.8%, respectively. The validated method was proven to be rugged for routine use to quantify endogenous levels of HMB in human plasma obtained from healthy volunteers.  相似文献   

12.
In order to accurately investigate the preclinical pharmacokinetics of (R)‐(+)‐rabeprazole sodium injection, a reliable high‐performance liquid chromatography (HPLC) method was developed using a Chiral‐AGP column to prove that there is no chiral bioconversion of (R)‐(+)‐rabeprazole to (S)‐(?)‐rabeprazole in beagle dogs after single intravenous administration of (R)‐(+)‐rabeprazole sodium injection. An HPLC–tandem mass spectrometry (HPLC‐MS/MS) method for analysis of (R)‐(+)‐rabeprazole was developed and validated, and used to acquire the pharmacokinetic parameters in beagle dogs. (R)‐(+)‐Rabeprazole and internal standard omeprazole were extracted from plasma samples by protein precipitation and separated on a C18 column using methanol–5 mm ammonium acetate as mobile phase. Detection was performed using a turbo‐spray ionization source and mass spectrometric positive multi‐reaction monitoring mode. The linear relationship was achieved in the range from 2.5 to 5000 ng/mL. The method also afforded satisfactory results in terms of sensitivity, specificity, precision, accuracy and recovery as well as the stability of the analyte under various conditions, and was successfully applied to a preclinical pharmacokinetic study in beagle dogs after single intravenous administrations of (R)‐(+)‐rabeprazole sodium injection at 0.33, 2 and 6 mg/kg. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A simple, rapid and sensitive liquid chromatography with tandem mass spectrometry (LC‐MS/MS) method for the determination of periplocymarin in biological samples was developed and successfully applied to the pharmacokinetic and tissue distribution study of periplocymarin after oral administration of periplocin. Biological samples were processed with ethyl acetate by liquid–liquid extraction, and diazepam was used as the internal standard. Periplocymarin was analyzed on a C18 column with isocratic eluted mobile phase composed of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min (73:27, v/v). Detection was performed on a triple‐quadrupole tandem mass spectrometer using positive‐ion mode electrospray ionization in the selected reaction monitoring mode. The MS/MS ion transitions monitored were m/z 535.3→355.1 and 285.1→193.0 for periplocymarin and diazepam, respectively. Good linearity was observed over the concentration ranges. The lower limit of quantification was 0.5 ng/mL in plasma and tested tissues. The intra‐and inter‐day precisions (relative standard deviation) were <10.2 and 10.5%, respectively, and accuracies (relative error) were between ?6.8 and 8.9%. Recoveries in plasma and tissue were >90%. The validated method was successfully applied to the pharmacokinetic and tissue distribution studies of periplocymarin in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
γ‐Tocotrienol has attracted much attention owing to its multiple health benefits. This study developed and validated a simple, specific, sensitive and reliable LC/MS/MS method to analyze γ‐tocotrienol in rat plasma. Plasma samples (50 μL) were extracted with internal standard solution (25 ng/mL of itraconazole) in acetonitrile (200 μL) with an average recovery of 44.7% and an average matrix effect of ?2.9%. The separation of γ‐tocotrienol and internal standard from the plasma components was achieved with a Waters XTerra® MS C18 column with acetonitrile–water as mobile phase. Analysis was performed under positive ionization electrospray mass spectrometer via the multiple reaction monitoring. The standard curve was linear over a concentration range of 10–1000 ng/mL with correlation coefficient values >0.997. The method was validated with intra‐ and inter‐day accuracy (relative error) ranging from 1.79 to 9.17% and from 2.16 to 9.66%, respectively, and precision (coefficient of variation) ranged from 1.94 to 9.25% and from 2.37 to 10.08%, respectively. Short‐term stability, freeze–thaw stability and the processed sample stability tests were performed. This method was further applied to analyze γ‐tocotrienol plasma concentrations in rats at various time points after administration of a 2 mg/kg single intravenous dose, and a pharmacokinetic profile was successfully obtained. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A new method was developed for the quantitation of 3‐α‐hydroxy tibolone, in human plasma, after oral administration of a tablet formulation containing tibolone (2.5 mg). 3‐α‐Hydroxy tibolone was extracted by a liquid–liquid procedure, using cyproterone acetate as internal standard and chlorobutane as extraction solvent. After extraction, samples were submitted to a derivatization step with p‐toluenesulfonyl isocyanate. A mobile phase consisting of acetonitrile and water (72:28 v/v) was used and chromatographic separation was achieved using Agilent XDB C18 column (100 × 4.6 mm i.d.; 5 µm particle size), at 40°C. Mass spectrometric detection was performed using atmospheric pressure chemical ionization in negative mode for 3‐α‐hydroxy tibolone and in positive mode for cyproterone acetate. The fragmentation transitions were m/z 510.2 → m/z 170.1 and m/z 417.0 → m/z 357.1 for 3‐α‐hydroxy tibolone and cyproterone acetate, respectively. Calibration curves were constructed over the range 100–30,000 pg/mL and the method was shown to be specific, precise and accurate, with a mean recovery rate of 94.2% for 3‐α‐hydroxy tibolone. No matrix effect or carry‐over was detected in the samples. The validated method was applied in a pharmacokinetic study with a tibolone formulation in healthy female volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Rapid, simple and reliable HPLC/UV and LC‐ESI‐MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C30 column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC‐ESI‐MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC‐ESI‐MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC‐ESI‐MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra‐ and inter‐day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC‐ESI‐MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
An LC‐MS/MS method was developed for the first time to simultaneously determine hyperoside and 2′′–O‐galloylhyperin, two major components in Pyrola calliantha extract, in rat plasma. Following extraction by one‐step protein precipitation with methanol, the analytes were separated on a Venusil MP‐C18 column within 2 min, using methanol–water–formic acid (50:50:0.1, v/v/v) as the mobile phase at a flow rate of 0.4 mL/min. Detection was performed on electrospray negative ionization mass spectrometry by multiple‐reaction monitoring of the transitions of 2′′–O‐galloylhyperin at m/z 615.1 → 301.0, of hyperoside at m/z 463.1 → 300.1, and of internal standard at m/z 415.1 → 295.1. The limits of quantification were 2 ng/mL for both hyperoside and 2′′–O‐galloylhyperin. The precisions were <13.1%, and the accuracies were between ?9.1 and 5.5% for both compounds. The method was successfully applied in pharmacokinetic studies following intravenous administration of the total flavonoids of P. calliantha extract in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In Cannabis sativa, Δ9‐Tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A) is the non‐psychoactive precursor of Δ9‐tetrahydrocannabinol (Δ9‐THC). In fresh plant material, about 90% of the total Δ9‐THC is available as Δ9‐THCA‐A. When heated (smoked or baked), Δ9‐THCA‐A is only partially converted to Δ9‐THC and therefore, Δ9‐THCA‐A can be detected in serum and urine of cannabis consumers. The aim of the presented study was to identify the metabolites of Δ9‐THCA‐A and to examine particularly whether oral intake of Δ9‐THCA‐A leads to in vivo formation of Δ9‐THC in a rat model. After oral application of pure Δ9‐THCA‐A to rats (15 mg/kg body mass), urine samples were collected and metabolites were isolated and identified by liquid chromatography‐mass spectrometry (LC‐MS), liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) and high resolution LC‐MS using time of flight‐mass spectrometry (TOF‐MS) for accurate mass measurement. For detection of Δ9‐THC and its metabolites, urine extracts were analyzed by gas chromatography‐mass spectrometry (GC‐MS). The identified metabolites show that Δ9‐THCA‐A undergoes a hydroxylation in position 11 to 11‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A (11‐OH‐Δ9‐THCA‐A), which is further oxidized via the intermediate aldehyde 11‐oxo‐Δ9‐THCA‐A to 11‐nor‐9‐carboxy‐Δ9‐tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A‐COOH). Glucuronides of the parent compound and both main metabolites were identified in the rat urine as well. Furthermore, Δ9‐THCA‐A undergoes hydroxylation in position 8 to 8‐alpha‐ and 8‐beta‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A, respectively, (8α‐Hydroxy‐Δ9‐THCA‐A and 8β‐Hydroxy‐Δ9‐THCA‐A, respectively) followed by dehydration. Both monohydroxylated metabolites were further oxidized to their bishydroxylated forms. Several glucuronidation conjugates of these metabolites were identified. In vivo conversion of Δ9‐THCA‐A to Δ9‐THC was not observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A highly sensitive and selective on‐line two‐dimensional reversed‐phase liquid chromatography/electrospray ionization–tandem mass spectrometry (2D‐LC‐ESI/MS/MS) method was developed and validated to determine rifaximin in rat serum by direct injection. The 2D‐LC‐ESI/MS/MS system consisted of a restricted access media column for trapping proteins as the first dimension and a Waters C18 column as second dimension using 0.1% aqueous acetic acid:acetonitrile as mobile phase in a gradient elution mode. Rifampacin was used as an internal standard. The linear dynamic range was 0.5–10 ng/mL (r2 > 0.998). Acceptable precision and accuracy were obtained over the calibration range. The assay was successfully used in analysis of rat serum to support pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
2,3,5,4′‐Tetrahydroxystilbene‐2‐O‐β‐D‐glucoside (THSG) from Polygoni multiflori has been demonstrated to possess a variety of pharmacological activities, including antioxidant, anti‐inflammatory and hepatoprotective activities. Ultra‐performance LC‐quadrupole TOF‐MS with MS Elevated Energy data collection technique and rapid resolution LC with diode array detection and ESI multistage MSn methods were developed for the pharmacokinetics, tissue distribution, metabolism, and excretion studies of THSG in rats following a single intravenous or oral dose. The three metabolites were identified by rapid resolution LC‐MSn. The concentrations of the THSG in rat plasma, bile, urine, feces, or tissue samples were determined by ultra‐performance LC‐MS. The results showed that THSG was rapidly distributed and eliminated from rat plasma. After the intravenous administration, THSG was mainly distributing in the liver, heart, and lung. For the rat, the major distribution tissues after oral administration were heart, kidney, liver, and lung. There was no long‐term storage of THSG in rat tissues. Total recoveries of THSG within 24 h were low (0.1% in bile, 0.007% in urine, and 0.063% in feces) and THSG was excreted mainly in the forms of metabolites, which may resulted from biotransformation in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号