首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We introduce a MAC-like scheme (a covolume method on rectangular grids) for approximating the generalized Stokes problem on an axiparallel domain. Two staggered grids are used in the derivation of the discretization. The velocity is approximated by conforming bilinears over rectangular elements, and the pressure by piecewise constants over macro-rectangular elements. The error in the velocity in the H1 norm and the pressure in the L2 norm are shown to be of first order, provided that the exact velocity is in H2 and the exact pressure in H1, and that the partition family of the domain is regular. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
We prove consistency, stability, and convergence of a point vortex approximation to the 3-D incompressible Euler equations with smooth solutions. The 3-D algorithm we consider here is similar to the corresponding 3-D vortex blob algorithm introduced by Beale and Majda; see [3]. We first show that the discretization error is second-order accurate. Then we show that the method is stable in lp norm for the particle trajectories and in w?1.p norm for discrete vorticity. Consequently, the method converges up to any time for which the Euler equations have a smooth solution. One immediate application of our convergence result is that the vortex filament method without smoothing also converges.  相似文献   

3.
In this article, we consider the finite volume element method for the second‐order nonlinear elliptic problem and obtain the H1 and W1, superconvergence estimates between the solution of the finite volume element method and that of the finite element method, which reveal that the finite volume element method is in close relationship with the finite element method. With these superconvergence estimates, we establish the Lp and W1,p (2 < p ≤ ∞) error estimates for the finite volume element method for the second‐order nonlinear elliptic problem. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

4.
We propose and analyze the finite volume method for solving the variational inequalities of first and second kinds. The stability and convergence analysis are given for this method. For the elliptic obstacle problem, we derive the optimal error estimate in the H1‐norm. For the simplified friction problem, we establish an abstract H1‐error estimate, which implies the convergence if the exact solution uH1(Ω) and the optimal error estimate if uH1 + α(Ω),0 < α≤2. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We consider the random 2‐satisfiability (2‐SAT) problem, in which each instance is a formula that is the conjunction of m clauses of the form xy, chosen uniformly at random from among all 2‐clauses on n Boolean variables and their negations. As m and n tend to infinity in the ratio m/n→α, the problem is known to have a phase transition at αc=1, below which the probability that the formula is satisfiable tends to one and above which it tends to zero. We determine the finite‐size scaling about this transition, namely the scaling of the maximal window W(n, δ)=(α?(n,δ), α+(n,δ)) such that the probability of satisfiability is greater than 1?δ for α<α? and is less than δ for α>α+. We show that W(n,δ)=(1?Θ(n?1/3), 1+Θ(n?1/3)), where the constants implicit in Θ depend on δ. We also determine the rates at which the probability of satisfiability approaches one and zero at the boundaries of the window. Namely, for m=(1+ε)n, where ε may depend on n as long as |ε| is sufficiently small and |ε|n1/3 is sufficiently large, we show that the probability of satisfiability decays like exp(?Θ(nε3)) above the window, and goes to one like 1?Θ(n?1|ε|?3 below the window. We prove these results by defining an order parameter for the transition and establishing its scaling behavior in n both inside and outside the window. Using this order parameter, we prove that the 2‐SAT phase transition is continuous with an order parameter critical exponent of 1. We also determine the values of two other critical exponents, showing that the exponents of 2‐SAT are identical to those of the random graph. © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 18: 201–256 2001  相似文献   

6.
We consider the fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition. First, we investigate the error estimates for the penalty method at the continuous level. We obtain the convergence of order in H1‐norm for the velocity and in L2‐norm for the pressure, where is the penalty parameter. The L2‐norm error estimate for the velocity is upgraded to . Moreover, we derive the a priori estimates depending on for the solution of the penalty problem. Next, we apply the finite element approximation to the penalty problem using the P1/P1 element with stabilization. For the discrete penalty problem, we prove the error estimate in H1‐norm for the velocity and in L2‐norm for the pressure, where h denotes the discretization parameter. For the velocity in L2‐norm, the convergence rate is improved to . The theoretical results are verified by the numerical experiments.  相似文献   

7.
Given a function f defined on a bounded polygonal domain W ì \mathbbR2{\Omega \subset \mathbb{R}^2} and a number N > 0, we study the properties of the triangulation TN{\mathcal{T}_N} that minimizes the distance between f and its interpolation on the associated finite element space, over all triangulations of at most N elements. The error is studied in the W 1, p semi-norm for 1 ≤ p < ∞, and we consider Lagrange finite elements of arbitrary polynomial order m − 1. We establish sharp asymptotic error estimates as N → +∞ when the optimal anisotropic triangulation is used. A similar problem has been studied in Babenko et al. (East J Approx. 12(1):71–101, 2006), Cao (J Numer Anal. 45(6):2368–2391, 2007), Chen et al. (Math Comput. 76:179–204, 2007), Cohen (Multiscale, Nonlinear and Adaptive Approximation. Springer, Berlin, 2009), Mirebeau (Constr Approx. 32(2):339–383, 2010), but with the error measured in the L p norm. The extension of this analysis to the W 1, p norm is required in order to match more closely the needs of numerical PDE analysis, and it is not straightforward. In particular, the meshes which satisfy the optimal error estimate are characterized by a metric describing the local aspect ratio of each triangle and by a geometric constraint on their maximal angle, a second feature that does not appear for the L p error norm. Our analysis also provides with practical strategies for designing meshes such that the interpolation error satisfies the optimal estimate up to a fixed multiplicative constant.  相似文献   

8.
We consider a chemotaxis model with volume‐filling effect introduced by Hillen and Painter. They also proved the existence of global solutions for a compact Riemannian manifold without boundary. Moreover, the existence of a global attractor in W1, p(Ω??n), p>n, p?2, was proved by Wrzosek. He also proved that the ω‐limit set consists of regular stationary solutions. In this paper, we prove that the 1‐D stationary problem has at most an infinitely countable number of regular solutions. Furthermore, we show that as t→∞ the solution of the 1‐D evolution problem converges to an equilibrium in W1, p, p?2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Let W be a nonnegative summable function whose logarithm is also summable with respect to the Lebesgue measure on the unit circle. For 0?<?p?<?∞ , Hp (W) denotes a weighted Hardy space on the unit circle. When W?≡?1, H p(W) is the usual Hardy space Hp . We are interested in Hp ( W)+ the set of all nonnegative functions in Hp ( W). If p?≥?1/2, Hp + consists of constant functions. However Hp ( W)+ contains a nonconstant nonnegative function for some weight W. In this paper, if p?≥?1/2 we determine W and describe Hp ( W)+ when the linear span of Hp ( W)+ is of finite dimension. Moreover we show that the linear span of Hp (W)+ is of infinite dimension for arbitrary weight W when 0?<?p?<?1/2.  相似文献   

10.
The aim of this paper is to introduce residual type a posteriori error estimators for a Poisson problem with a Dirac delta source term, in L p norm and W1,p seminorm. The estimators are proved to yield global upper and local lower bounds for the corresponding norms of the error. They are used to guide adaptive procedures, which are experimentally shown to lead to optimal orders of convergence.  相似文献   

11.
We show that the L p norm of the second fundamental form of hypersurfaces in R n+1 is very coercive in the GMT setting of Gauss graphs currents, when p exceeds the dimension n. A compactness result for immersed hypersurfaces and its application to a variational problem are provided.  相似文献   

12.
Two‐level penalty finite volume method for the stationary Navier–Stokes equations based on the P1 ? P0 element is considered in this paper. The method involves solving one small penalty Navier–Stokes problem on a coarse mesh with mesh size H = ?1 / 4h1 / 2, a large penalty Stokes problem on a fine mesh with mesh size h, where 0 < ? < 1 is a penalty parameter. The method we study provides an approximate solution with the convergence rate of same order as the penalty finite volume solution (u?h,p?h), which involves solving one large penalty Navier–Stokes problem on a fine mesh with the same mesh size h. However, our method can save a large amount of computational time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet boundary condition is considered. The interface condition is interpreted as an additional singular force field to the Stokes equations using the characteristic function. The finite element method is applied after introducing a regularization of the singular source term. Consequently, the error is divided into the regularization and discretization parts which are studied separately. As a result, error estimates of order h1/2 in H1 × L2 norm for the velocity and pressure, and of order h in L2 norm for the velocity are derived. Those theoretical results are also verified by numerical examples.  相似文献   

14.
In this work, the residual‐type posteriori error estimates of stabilized finite volume method are studied for the steady Stokes problem based on two local Gauss integrations. By using the residuals between the source term and numerical solutions, the computable global upper and local lower bounds for the errors of velocity in H1 norm and pressure in L2 norm are derived. Furthermore, a global upper bound of u ? uh in L2‐norm is also derived. Finally, some numerical experiments are provided to verify the performances of the established error estimators. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper deals with optimal control problems constrained by linear elliptic partial differential equations. The case where the right‐hand side of the Neumann boundary is controlled, is studied. The variational discretization concept for these problems is applied, and discretization error estimates are derived. On polyhedral domains, one has to deal with edge and corner singularities, which reduce the convergence rate of the discrete solutions, that is, one cannot expect convergence order two for linear finite elements on quasi‐uniform meshes in general. As a remedy, a local mesh refinement strategy is presented, and a priori bounds for the refinement parameters are derived such that convergence with optimal rate is guaranteed. As a by‐product, finite element error estimates in the H1(Ω)‐norm, L2(Ω)‐norm and L2(Γ)‐norm for the boundary value problem are obtained, where the latter one turned out to be the main challenge. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Stochastic differential equations in ?n with random coefficients are considered where one continuous driving process admits a generalized quadratic variation process. The latter and the other driving processes are assumed to possess sample paths in the fractional Sobolev space Wβ2 for some β > 1/2. The stochastic integrals are determined as anticipating forward integrals. A pathwise solution procedure is developed which combines the stochastic Itô calculus with fractional calculus via norm estimates of associated integral operators in Wα 2 for 0 < α < 1. Linear equations are considered as a special case. This approach leads to fast computer algorithms basing on Picard's iteration method. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
This paper is devoted to Stokes and Navier–Stokes problems with non‐standard boundary conditions: we consider, in particular, the case where the pressure is given on a part of the boundary. These problems were studied by Bégue, Conca, Murat and Pironneau. They proved the existence of variational solutions, indicating that these were solutions of the initial non‐standard problems, if they are regular enough, but without specifying the conditions on the data which would imply this regularity. In this paper, first we show that the variational solutions, on supposing pressure on the boundary Γ2 of regularity H1/2 instead of H?1/2, have their Laplacians in L2 and, therefore, are solutions of non‐standard Stokes problem. Next, we give a result of regularity H2, which we generalize, obtaining regularities Wm, r, m∈?, m?2, r?2. Finally, by a fixed‐point argument, we prove analogous results for the Navier–Stokes problem, in the case where the viscosity νis large compared to the data. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Discrete duality finite volume schemes on general meshes, introduced by Hermeline and Domelevo and Omnès for the Laplace equation, are proposed for nonlinear diffusion problems in 2D with nonhomogeneous Dirichlet boundary condition. This approach allows the discretization of non linear fluxes in such a way that the discrete operator inherits the key properties of the continuous one. Furthermore, it is well adapted to very general meshes including the case of nonconformal locally refined meshes. We show that the approximate solution exists and is unique, which is not obvious since the scheme is nonlinear. We prove that, for general W?1,p(Ω) source term and W1‐(1/p),p(?Ω) boundary data, the approximate solution and its discrete gradient converge strongly towards the exact solution and its gradient, respectively, in appropriate Lebesgue spaces. Finally, error estimates are given in the case where the solution is assumed to be in W2,p(Ω). Numerical examples are given, including those on locally refined meshes. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

19.
In this article, we study the property of norm retrievability of spanning vectors in a finite dimensional complex Hilbert space ?. Using the set of zero trace operators on ? and two sets of self-adjoint operators on ? denoted by 𝒮1,0 and 𝒮1,1, we present some equivalent conditions to the norm retrievable frames in ?. We will also show that the property of norm retrievability for n-dimensional complex Hilbert space ? with n≠2 is stable under enough small perturbation of the frame set only for phase retrievable frames.  相似文献   

20.
We consider the resolvent problem for the linearized system of equations that describe motion of compressible viscous barotropic fluids in a bounded domain with the Navier boundary condition. This problem has uniquely a solution in [(W)\dot]1p ×(W2p)n{\dot{W}^{1}_{p} \times (W^{2}_{p})^{n}} satisfying L p estimates for any 1 < p < ∞. Moreover, resolvent estimates for the linearized operator of the above system in [(W)\dot]1p ×(Lp)n{\dot{W}^{1}_{p} \times (L_{p})^{n}} are established. Our main results yield clearly that the linearized operator is the infinitesimal generator of a uniformly bounded analytic semigroup on [(W)\dot]1p ×(Lp)n{\dot{W}^{1}_{p} \times (L_{p})^{n}}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号