首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Diels–Alder reactions employing 1,2‐azaborine heterocycles as 1,3‐dienes are reported. Carbocyclic compounds with high stereochemical and functional complexity are produced, as exemplified by the straightforward two‐step synthesis of an amino allyl boronic ester bearing four contiguous stereocenters as a single diastereomer. Whereas electron‐deficient dienophiles undergo irreversible Diels–Alder reactions, a reversible Diels–Alder reaction with the less electron‐deficient methyl acrylate is observed. Both the N and the B substituent of the 1,2‐azaborine exert significant influence on the [4+2] cycloaddition reactivity as well as the aromatic character of the heterocycle. The experimentally determined thermodynamic parameters of the reversible Diels–Alder reaction between 1,2‐azaborines and methyl acrylate correlate with aromaticity trends and place 1,2‐azaborines approximately between furan and thiophene on the aromaticity scale.  相似文献   

2.
Asymmetric hetero‐Diels‐Alder (AHDA) reactions provide a multitude of opportunities for the highly efficient, regio‐ and stereoselective construction of various heterocycles in enantiomerically pure form. The asymmetric aza‐Diels‐Alder (A‐aza‐DA) reaction using diversely hetero‐dienophiles and hetero‐dienes have been increasingly developed as a valuable method for the synthesis of functionalized nitrogen ring systems. The purpose of this review is to give a detailed discussion of the A‐aza‐DA reaction particularly, the stereoselective reactions of imines as dienophiles with Dainshefsky dienes to obtain optically pure aza‐Diels‐Alder products. The development of stereoselective variants of the reaction make use of imines as the dienophile and Dainshefsky dienes is at the forefront of these studies. This review updates the A‐aza‐DA reactions covering the literature from 1972 till date  相似文献   

3.
The first catalytic asymmetric inverse‐electron‐demand (IED) oxa‐Diels–Alder reaction of ortho‐quinone methides, generated in situ from ortho‐hydroxybenzyl alcohols, has been established. By selecting 3‐methyl‐2‐vinylindoles as a class of competent dienophiles, this approach provides an efficient strategy to construct an enantioenriched chroman framework with three adjacent stereogenic centers in high yields and excellent stereoselectivities (up to 99 % yield, >95:5 d.r., 99.5:0.5 e.r.). The utilization of ortho‐hydroxybenzyl alcohols as precursors of dienes and 3‐methyl‐2‐vinylindoles as dienophiles, as well as the hydrogen‐bonding activation mode of the substrates met the challenges of a catalytic asymmetric IED oxa‐Diels–Alder reaction.  相似文献   

4.
Diels‐Alder reactions of tetracyclone with various dienophiles under solvent free conditions were studied. In the case of cyclic dienophiles that exhibit more steric hindrance, decarbonylation of [4+2] adducts were carried out.  相似文献   

5.
Strain‐promoted inverse electron‐demand Diels–Alder cycloaddition (SPIEDAC) reactions between 1,2,4,5‐tetrazines and strained dienophiles, such as bicyclononynes, are among the fastest bioorthogonal reactions. However, the synthesis of 1,2,4,5‐tetrazines is complex and can involve volatile reagents. 1,2,4‐Triazines also undergo cycloaddition reactions with acyclic and unstrained dienophiles at elevated temperatures, but their reaction with strained alkynes has not been described. We postulated that 1,2,4‐triazines would react with strained alkynes at low temperatures and therefore provide an alternative to the tetrazine cycloaddition reaction for use in in vitro or in vivo labelling experiments. We describe the synthesis of a 1,2,4‐triazin‐3‐ylalanine derivative fully compatible with the fluorenylmethyloxycarbonyl (Fmoc) strategy for peptide synthesis and demonstrate its reaction with strained bicyclononynes at 37 °C with rates comparable to the reaction of azides with the same substrates. The synthetic route to triazinylalanine is readily adaptable to late‐stage functionalization of other probe molecules, and the 1,2,4‐triazine‐SPIEDAC therefore has potential as an alternative to tetrazine cycloaddition for applications in cellular and biochemical studies.  相似文献   

6.
We report the combination of transition‐metal‐catalyzed diversified cycloisomerization of 1,6‐enynes with chiral Lewis acid promoted asymmetric Diels–Alder reaction to realize asymmetric cycloisomerization/Diels–Alder relay reactions of 1,6‐enynes with electron‐deficient alkenes. A broad spectrum of chiral [5,6]‐bicyclic products could be acquired in high yields (up to 99 %) with excellent diastereoselectivy (>19:1 dr) and enantioselectivity (up to 99 % ee).  相似文献   

7.
Complexity‐increasing Domino reactions comprising C?H allenylation, a Diels–Alder reaction, and a retro‐Diels–Alder reaction were realized by a versatile catalyst derived from earth‐abundant, non‐toxic manganese. The C?H activation/Diels–Alder/retro‐Diels–Alder alkyne annulation sequence provided step‐economical access to valuable indolone alkaloid derivatives through a facile organometallic C?H activation manifold with transformable pyridines.  相似文献   

8.
1‐Aminodecalins were prepared from acyclic precursors by combining the powerful twofold diene‐transmissive Diels–Alder chemistry of [3]dendralenes with the simplicity of enamine formation. On mixing at ambient temperature, a simple dienal condenses with a primary or secondary amine to generate the enamine, a 1‐amino‐[3]dendralene in situ, and this participates as a double diene in a sequence of two Diels–Alder events with separate dienophiles. Overall, four C?C bonds and one C?N bond are formed. Mechanistic insights into these reactions are provided by means of density functional theory calculations.  相似文献   

9.
The cycloadditions of (E)‐3‐diazenylbut‐2‐enes 1 with a variety of alkenes 2 – 6 were carried out in water as well as in organic solvents. The reactions were always faster in heterogeneous aqueous medium than in the organic solvents. These conjugated diazenyl‐alkenes behave mainly as heterodienes, and the Diels‐Alder adducts are the sole or at least main reaction products. Pyrroles derived from zwitterionic [3+2] cycloaddition reactions were observed in some cases. The cycloaddition of 1a with (+)‐2‐(ethenyloxy)‐3,7,7‐trimethylbicyclo[4.1.0]heptane ( 5 ) is the first example of an asymmetric `inverse electron‐demand' Diels‐Alder reaction carried out in pure water.  相似文献   

10.
The use of 1,7‐octadiene as an in situ source of ethylene led us to develop a novel multicomponent tandem cross‐enyne metathesis (CEYM)‐Diels–Alder reaction. The process can be considered a relay metathesis, in which the ethylene liberated in the ring‐closing metathesis (RCM) of 1,7‐octadiene initiates the tandem sequence. Aliphatic, aromatic, and fluorinated alkynes and several dienophiles are compatible with the process, which is particularly efficient with aromatic alkynes. This methodology constitutes a useful variant of Mori’s conditions in CEYM‐related reactions.  相似文献   

11.
A hetero Diels‐Alder reaction with inverse electron demand between 4‐hydroxycoumarin, aromatic aldehydes and electron‐rich alkenes yielded a multitude of 2,4‐disubstituted 3,4‐dihydropyranocoumarins. This route opened an easy access to coumarin anticoagulants and provided a library of pyranocoumarin derivatives.  相似文献   

12.
The imino Diels–Alder reaction is an efficient method for the synthesis of aza‐heterocycles. While different stereo‐ and enantioselective inverse‐electron‐demand imino Diels–Alder (IEDIDA) reactions have been reported before, IEDIDA reactions including electron‐deficient dienes are unprecedented. The first enantioselective IEDIDA reaction between electron‐poor chromone dienes and cyclic imines, catalyzed by zinc/binol complexes is described. The novel reaction provides a facile entry to a natural product inspired collection of ring‐fused quinolizines including a potent modulator of mitosis.  相似文献   

13.
Tetrahydropyridines 4a, 4b, 4c and pyridines 7a, 7b, 7c, 9a, 9b, 9c were synthesized by a [4 + 2] cycloaddition between 1,4‐bis aryl‐2‐aza‐1,3‐butadienes and electron‐poor dienophiles. Dimeric cycloadducts 6a, 6b, 6c , were also isolated indicating a competition between the expected Hetero Diels‐Alder and a dimerization process.  相似文献   

14.
Sealed tube reactions of the naphthosultine 8 with a series of electron‐deficient dienophiles (fumaronitrile, N‐phenylmaleimide, dimethyl fumarate, and dimethyl acetylenedicarboxylate) in toluene at 180 °C gave corresponding 1:1 cycloadducts 11–14 in various amounts along with rearranged naphthosulfolene 7 in 67–95% yields. The reaction of 1,2,4,5‐tetra(bromomethyl)benzene with Rongalite (sodium form aldehyde sulfoxylate) and tetrabutylammonium bromide in DMF gave benzodisultines 17 and 18 in a combined yield of 56%. Sealed tube reactions of benzodisultines 17 and 18 with a series of dienophiles in xylene at 200 °C gave corresponding 1:1 and 1:2 cycloadducts 20–27 . The results suggested that thermal extrusion of sulfurdioxide from these sultines led to either o‐naphthoquinodimethane 6 (from 8 ) or bis‐o‐quinodimethane 19 (from 17 and 18 ); sub sequent trapping of these reactive intermediates by dienophiles and SO2 gave various 1:1 and 1:2 Diels‐Alder ad ducts in modest to excellent yields.  相似文献   

15.
Rolf Huisgen explored the Diels–Alder reactions of 1,3,5‐cycloheptatriene (CHT) and cyclooctatetraene (COT) with the dienophiles maleic anhydride and 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione (PTAD) to determine the kinetics and mechanisms of various electrocyclizations and Diels–Alder reactions. These reactions have been examined with density functional theory. Modern computational chemistry has provided information not previously available by experiment. Transition states for all the reactions have been identified, and their Gibbs energies are used to explain the experimental reactivities. Zwitterionic intermediates were not found in the [4+2] cycloadditions of both CHT or COT with PTAD and are thus not involved in these reactions. [2+2+2] cycloadditions, as an alternative path to the Diels–Alder products, are highly disfavored. Rapid double nitrogen inversion was found for the cycloaddition products with PTAD.  相似文献   

16.
Angularly fused carbocyclic frameworks and their heteroatom‐substituted analogues exist in many natural products that display a broad and interesting range of biological activities. Preparation of polycyclic products by cycloaddition reactions have been the long‐standing hot topic in the synthetic community. Dehydro‐Diels–Alder (DDA) reactions are one class of dehydropericyclic reactions that are derived conceptually by systematic removal of hydrogen atom pairs. A base‐promoted tandem Michael addition and DDA reaction of α,α‐dicyanoolefins with electron‐deficient 1,3‐conjugated enynes was realized in which a DDA reaction takes place between the arylalkynes and electron‐deficient tetrasubstituted olefin. The control experiments support the stepwise anionic reaction pathway rather than the concerted reaction pathway.  相似文献   

17.
A series of readily accessible, dynamic Diels–Alder reactions that are reversible at room temperature have been developed between anthracene derivatives as dienes and N‐phenyl‐1,2,4‐triazoline‐3,5‐dione as the dienophile. The adducts formed undergo reversible component exchange to form dynamic libraries of equilibrating cycloadducts. Furthermore, reversible adduct formation allows temperature‐dependent modulation of the fluorescent properties of anthracene components; a feature of potential interest for the design of optodynamic polymeric materials by careful selection and manipulation of these simple dienes and dienophiles.  相似文献   

18.
The base‐catalyzed Diels–Alder reactions of 4‐arylthio‐3‐hydroxy‐2‐pyrones are reported. Treatment of 4‐arylthio‐3‐hydroxy‐2‐pyrones and dienophiles with triethylamine gave 2‐arylthio‐2‐cyclohexenone derivatives by the Diels–Alder reaction involving a decarboxylation in excellent to reasonable yields.  相似文献   

19.
We have quantum chemically studied alkali cation‐catalyzed aromatic Diels‐Alder reactions between benzene and acetylene forming barrelene using relativistic, dispersion‐corrected density functional theory. The alkali cation‐catalyzed aromatic Diels‐Alder reactions are accelerated by up to 5 orders of magnitude relative to the uncatalyzed reaction and the reaction barrier increases along the series Li+ < Na+ < K+ < Rb+ < Cs+ < none. Our detailed activation strain and molecular‐orbital bonding analyses reveal that the alkali cations lower the aromatic Diels‐Alder reaction barrier by reducing the Pauli repulsion between the closed‐shell filled orbitals of the dienophile and the aromatic diene. We argue that such Pauli mechanism behind Lewis‐acid catalysis is a more general phenomenon. Also, our results may be of direct importance for a more complete understanding of the network of competing mechanisms towards the formation of polycyclic aromatic hydrocarbons (PAHs) in an astrochemical context.  相似文献   

20.
In the presence of a strong Lewis base, such as Et3N, trithio‐1,8‐naphthalic anhydride (3) is easily oxidized. Two improved syntheses of trithio‐1,8‐naphthalic anhydride (3) are described. Trithio‐1,8‐naphthalic anhydride (3) undergoes Diels‐Alder reactions with electron‐deficient alkenes to give novel fused heterocyclic compounds (6–11) that then can undergo a novel, gradual desulfuration dimerization with triethyl phosphite to afford 12 and its analogs 13 and 14. The structures of 6–14 are confirmed by microanalysis, IR, and NMR spectroscopy, and MS. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 141–146, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号