首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A highly sensitive, selective and rugged method has been described for the quantification of metronidazole (MTZ) in human plasma by liquid chromatography–tandem mass spectrometry using metronidazole‐d4 as the internal standard (IS). The analyte and the IS were extracted from 100 μL plasma by liquid–liquid extraction. The clear samples obtained were chromatographed on an ACE C18 (100 × 4.6 mm, 5 μm) column using acetonitrile and 10.0 mm ammonium formate in water, pH 4.00 (80:20, v/v) as the mobile phase. A triple quadrupole mass spectrometer system equipped with turbo ion spray source and operated in multiple reaction monitoring mode was used for the detection and quantification of MTZ. The calibration range was established from 0.01 to 10.0 μg/mL. The results of validation testing for precision and accuracy, selectivity, matrix effects, recovery and stability complied with current bioanalytical guidelines. A run time of 3.0 min permitted analysis of more than 300 samples in a day. The method was applied to a bioequivalence study with 250 mg MTZ tablet formulation in 24 healthy Indian males.  相似文献   

2.
A robust, rapid and sensitive UPLC–MS/MS method has been developed, optimized and validated for the determination of amlodipine (AML) and atorvastatin (ATO) in human plasma using eplerenone as an internal standard (IS). Multiple‐reaction monitoring in positive electrospray ionization mode was utilized in Xevo TQD LC–MS/MS. Double extraction was used in sample preparation using diethyl ether and ethyl acetate. The prepared samples were analyzed using an Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column. Ammonium formate and acetonitrile, pumped isocraticaly at a flow rate of 0.25 mL/min, were used as a mobile phase. Method validation was done as per the US Food and Drug Administration guidelines. Linearity was achieved in the range of 0.1–10 ng/mL for AML and 0.05–50 ng/mL for ATO. Intra‐day and inter‐day accuracy and precision were calculated and found to be within the acceptable range. A short run time, of <1.5 min, permits analysis of a large number of plasma samples per batch. The developed and validated method was applied to estimate AML and ATO in a bioequivalence study in healthy human volunteers.  相似文献   

3.
A highly sensitive, selective and rapid ultra‐performance liquid chromatography–tandem mass spectrometry method has been developed for the quantification of a Janus kinase (JAK) inhibitor, tofacitinib (TOF). The assay employed liquid–liquid extraction with methyl‐tert butyl ether to extract tofacitinib and tofacitinib‐13C3 15 N (as internal standard) from human plasma. The samples were analyzed on a UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column using acetonitrile and 10.0 mm ammonium acetate, pH 4.5 (75:25, v/v) as the mobile phase within 1.4 min. The precursor/product ion transitions were monitored at m/z 313.3/149.2 and 317.4/149.2 for tofacitinib and tofacitinib‐13C3 15 N, respectively, in the positive electrospray ionization mode. The calibration curves were linear (r2 ≥ 0.9978) across the concentration range of 0.05–100 ng/mL. The mean extraction recovery of tofacitinib across quality controls was 98.6%. The intra‐ and inter‐batch precision (CV) and accuracy ranged from 2.1–5.1 and 96.2–103.1%, respectively. All validation results complied well with the current guidelines. The method is amenable to high sample throughput and was applied to determine TOF plasma concentration in a pharmacokinetic study with 12 healthy Indian subjects after oral administration of 5 mg tablets.  相似文献   

4.
A novel and sensitive LC–MS/MS method was developed and validated for determination of sofosbuvir (SF) using eplerenone as an internal standard. The Xevo TQD LC–MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. Extraction with tert‐butyl methyl ether was used in sample preparation. The prepared samples were chromatographed on Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column by pumping 0.1% formic acid and acetonitrile in an isocratic mode at a flow rate of 0.35 mL/min. Method validation was performed as per the US Food and Drug Administration guidelines and the standard curves were found to be linear in the range of 0.25–3500 ng/mL for SF. The intra‐ and inter‐day precision and accuracy results were within the acceptable limits. A very short run time of 1 min made it possible to analyze more than 500 human plasma samples per day. A very low quantification limit of SF allowed the applicability of the developed method for determination of SF in a bioequivalence study in human volunteers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We have developed and validated a fast and sensitive ultra high‐performance liquid chromatography with positive ion electrospray ionization tandem mass spectrometry method for determining N‐ butylscopolamine levels in human plasma using propranolol as an internal standard. The acquisition was set up in the multiple reaction monitoring mode with the transitions m /z 360.3 → 138.0 for N‐ butylscopolamine and m /z 260.2 → 116.1 for IS. This method uses a liquid–liquid extraction process with dichloromethane. The analyte and IS were chromatographed on a C18, 50 × 2.1 mm, 1.7 μm column through isocratic elution with acetonitrile–5 mm ammonium acetate (adjusted to pH 3.0 with formic acid). The method was linear in the 1–1000 pg/mL range for N‐ butylscopolamine and was selective, precise, accurate and robust. The validated method was successfully applied to perform a bioequivalence study of the reference (Buscopan®, from Boehringer Ingelheim) and the test sample coated‐tablet formulations (from Foundation for Popular Remedy), both containing 10 mg of N‐ butylscopolamine bromide administered as a single dose. Using 58 healthy volunteers and accounting for the high intra‐individual variability confirmed by statistical calculations (38%), the two formulations were considered bioequivalent because the rate and extent of absorption (within 80–125% interval), satisfying international requirements.  相似文献   

6.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method is described for the simultaneous determination of silodosin (SLD) and its active metabolite silodosin β‐d ‐glucuronide (KMD‐3213G) in human plasma. Liquid–liquid extraction of plasma samples was carried out with ethyl acetate and methyl tert‐butyl ether solvent mixture using deuterated analogs as internal standards. The extraction recoveries of SLD and KMD‐3213G were in the ranges 90.8–93.4 and 87.6–89.9%, respectively. The extracts were analyzed on a Symmetry C18 (50 × 4.6 mm, 5 μm) column under gradient conditions using 10 mm ammonium formate in water and methanol–acetonitrile (40:60, v/v), within 6.0 min. For MS/MS measurements, ionization of the analytes was carried out in the positive ionization mode and the transitions monitored were m/z 496.1 → 261.2 for SLD and m/z 670.2 → 494.1 for KMD‐3213G. The method showed good linearity, accuracy, precision and stability in the range 0.10–80.0 ng/mL for SLD and KMD‐3213G. The IS‐normalized matrix factors obtained were highly consistent, ranging from 0.962 to 1.023 for both analytes. The method was used to support a bioequivalence study of SLD and its metabolite in healthy volunteers after oral administration of 8 mg silodosin capsules.  相似文献   

7.
A simple, rapid and sensitive liquid chromatography/electrospray ionization tandem mass spectrometry (LC‐ESI‐MS/MS) assay method is proposed for the determination of tolvaptan in human plasma samples using tolvaptan d7 as internal standard (IS). Analyte and the IS were extracted from 100 μL of human plasma via simple liquid–liquid extraction. The chromatographic separation was achieved on a C18 column using a mixture of methanol and 0.1% formic acid buffer (80:20, v/v) as the mobile phase at a flow rate of 1.0 mL/min. The calibration curve obtained was linear (r2 ≥ 0.99) over the concentration range of 0.05–501 ng/mL. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The intra‐day and inter‐day precision (coefficient of variation) and accuracy results in three validation batches across five concentration levels were well within the acceptance limits. A run time of 2.0 min for each sample made it possible to analyze more samples in a short time, thus increasing the productivity. The proposed method was successfully applied to a pharmacokinetic study of 15 mg and 60 mg tolvaptan tablet formulation in healthy South Indian male subjects under fasting condition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A simple, rapid and sensitive liquid chromatography–tandem mass spectrometric (LC‐MS/MS) assay method has been developed and validated for simultaneous quantification of sitagliptin and simvastatin in human plasma. Carbamazepine was used as an internal standard (IS). The analytes and IS were extracted from the human plasma by liquid–liquid extraction technique. The reconstituted samples were chromatographed on an Alltima HP C18 column using an isocratic solvent mixture [acetonitrile–5 mm ammonium acetate (pH 4.5), 85:15 (v/v)] at a flow rate of 1.0 mL/min. Method validation was performed as per Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curves obtained were linear (r2 ≥ 0.99) over the concentration range of 0.10–501 and 0.05–105 ng/mL for sitagliptin and simvastatin, respectively. The results of the intra‐ and inter‐day precision and accuracy studies were well within the acceptable limits. Both the analytes were found to be stable in a battery of stability studies. The method is precise and sensitive enough for its intended purpose. A run time of 3.0 min for each sample made it possible to analyze more than 300 plasma samples per day. The developed assay was successfully applied to a pharmacokinetic study in human volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A high‐throughput and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of flunarizine in human plasma. Liquid–liquid extraction under acidic conditions was used to extract flunarizine and flunarizine‐d8 from 100 μL human plasma. The mean extraction recovery obtained for flunarizine was 98.85% without compromising the sensitivity of the method. The chromatographic separation was performed on Hypersil Gold C18 (50 × 2.1 mm, 3 μm) column using methanol–10 mm ammonium formate, pH 3.0 (90:10, v/v) as the mobile phase. A tandem mass spectrometer (API‐5500) equipped with an electrospray ionization source in the positive ion mode was used for detection of flunarizine. Multiple reaction monitoring was selected for quantitation using the transitions, m/z 405.2 → 203.2 for flunarizine and m/z 413.1 → 203.2 for flunarizine‐d8. The validated concentration range was established from 0.10 to 100 ng/mL. The accuracy (96.1–103.1%), intra‐batch and inter‐batch precision (CV ≤ 5.2%) were satisfactory and the drug was stable in human plasma under all tested conditions. The method was used to evaluate the pharmacokinetics of 5 and 10 mg flunarizine tablet formulation in 24 healthy subjects. The pharmacokinetic parameters Cmax and AUC were dose‐proportional.  相似文献   

10.
A highly sensitive, specific and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) analytical method has been developed and validated for the determination of ospemifene in human plasma using ospemifene‐d4 as an internal standard. Solid‐phase extraction technique with Phenomenex Strata X‐33 μm polymeric sorbent cartridges (30 mg/1 mL) was used to extract the analytes from the plasma. The chromatographic separation was achieved on Agilent Eclipse XDB‐Phenyl, 4.6 × 75 mm, 3.5 μm column using the mobile phase composition of methanol and 20 mm ammonium formate buffer (90:10, v/v) at a flow rate of 0.9 mL/min. A detailed method validation was performed as per the US Food and Drug Administration guidelines and the calibration curve obtained was linear (r2 = 99) over the concentration range 5.02–3025 ng/mL. The API‐4500 MS/MS was operated under multiple reaction monitoring mode during the analysis. The proposed method was successfully applied to a pharmacokinetic study in healthy human volunteers after oral administration of an ospemifene 60 mg tablet under fed conditions.  相似文献   

11.
A method based on ultra‐performance liquid chromatography–tandem mass spectrometry has been developed for the rapid and simultaneous determination of five catechins and four theaflavins in rat plasma using ethyl gallate as internal standard. The pharmacokinetic profiles of these compounds were compared after oral administration of five kinds of Da Hong Pao tea to rats. Biosamples processed with a mixture of β‐glucuronidase and sulfatase were extracted with ethyl acetate–isopropanol. Chromatographic separation was achieved by gradient elution using 10 mm HCOONH4 solution and methanol as the mobile phase. Analytes were detected using negative ion electrospray ionization in multiple reaction monitoring mode. The lower limits of quantification were 1.0, 0.74 and 0.5 ng/mL for theaflavins, two catechins and three catechins, respectively. The validation parameters were well within acceptable limits. The average half‐lives (t1/2) in blood of the reference solution group was much shorter than those of tea samples. The values of AUC0–t and Cmax of the polyphenols and theaflavins exhibited linear pharmacokinetic characteristics which were related to the dose concentration.  相似文献   

12.
This paper describes a simple, rapid and sensitive liquid chromatography/tandem mass spectrometry assay for the determination of aliskiren in human plasma using nevirapine as an internal standard. Analyte and the internal standard were extracted from 100 μL of human plasma via liquid–liquid extraction using tert‐butyl methyl ether. The chromatographic separation was achieved on a C18 column using a mixture of acetonitrile and 0.1% formic acid (90:10, v/v) as the mobile phase at a flow rate of 0.9 mL/min. The calibration curve obtained was linear (r2 ≥ 0.99) over the concentration range of 0.10–1013 ng/mL. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. A run time of 2.2 min for each sample made it possible to analyze a greater number of samples in a short time, thus increasing the productivity. The proposed method was found to be applicable to clinical studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
To enable the reliable quantification of ciprofloxacin in human urine, a sensitive and selective assay based on liquid chromatography–tandem mass spectrometry was developed. The chromatographic separation of the ciprofloxacin was carried out on a Zorbex Eclipse C18 column using methanol and ammonium acetate as a mobile phase by the gradient elution method. The developed assay covered a wide range of concentrations (1.56–100 ng/mL) with a lower limit of detection of 0.76 ng/mL. Quantification was performed using the multiple reaction monitoring transitions 331.8/231 for ciprofloxacin and 362/318 for ofloxacin (internal standard). This assay was validated for linearity, accuracy, precision and recovery. The validated method was then applied to the biodegradability of ciprofloxacin (99%) from human urine in the microbial fuel cell.  相似文献   

14.
In this work, a selective and sensitive ultra‐performance liquid chromatography tandem mass spectrometry method was established and validated for determination of corypalmine in mouse blood after oral or intravenous administration. A UPLC BEH C18 column was used to separate corypalmine and berberrubine (internal standard) at 40°C. The mobile phase was composed of acetonitrile and 10 mmol/L ammonium acetate (containing 0.1% formic acid) at a flow rate of 0.4 mL/min, and the total run time was 4.0 min. Electrospray ionization in positive ion mode was applied; target fragment ions m/z 342.2 → 178.0 for corypalmine and m/z 322.1 → 307.0 for berberrubine were identified with multiple reaction monitoring mode. The linear range was 1–1000 ng/mL (r > 0.995) and the lower limit of quantification for corypalmine in plasma was 1.0 ng/mL. The intra‐ and inter‐day precisions were both <14%. The range of accuracy in this method was 97.5–109.0%. Mean recovery was >69.6%, and the matrix effect was 96.8–107.6%. Based on its high sensitivity, specificity and reliability, this method was successfully applied to study the pharmacokinetic parameters of corypalmine in mouse by oral and intravenous administration, and finally, the bioavailability of corypalmine was identified at 4.6%.  相似文献   

15.
A rapid and sensitive liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method to determine clonidine in human plasma was developed and fully validated. Sample preparation was involved an one‐step extraction with diethyl ether. Donepezil was employed as the internal standard (IS). Chromatographic separation was performed on a Hypersil BDS C18 column (i.d. 2.1 × 50 mm, particle size 3μm) with a mobile phase of methanol–water (containing 0.1% formic acid; 60:40, v/v) at a flow rate of 200 μL/min. The peaks were detected by mass spectrometry using the electrospray ion source in selected reaction monitoring mode. The extraction recovery was 72.53–85.25%. The method was found to be linear in a concentration range of 0.02–6.00 ng/mL and the lower limit of quantification was 0.02 ng/mL. The within‐ and between‐batch precisions at three concentrations were 4.33–16.47 and 7.24–17.24% with accuracies of ?2.47–10.91 and 1.86–10.19%, respectively. This validated method was successfully used for a bioequivalence study of two clonidine transdermal patches on healthy volunteers. The results suggested that the test formulation of clonidine patch met the regulatory criterion for bioequivalence to the reference formulation, but a larger sample size should be needed for the estimation of bioequivalence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of pethidine in human plasma was developed and validated over the concentration range of 4–2000 ng/mL. After addition of ketamine as internal standard, liquid–liquid extraction was used to produce a protein‐free extract. Chromatographic separation was achieved on a 100 × 2.1 mm, 5 µm particle, AllureTM PFP propyl column, with 45:40:15 (v/v/v) acetonitrile–methanol–water containing 0.2% formic acid as mobile phase. The MS data acquisition was accomplished by multiple reactions monitoring mode with positive electrospray ionization interface. The lower limit of quantification was 4 ng/mL; for inter‐day and intra‐day tests, the precision (RSD) for the entire validation was less than 7%, and the accuracy was within 95.9–106.5%. The method is sensitive and simple, and was successfully applied to analysis of samples of clinical intoxication. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
An analytical method based on liquid–liquid extraction has been developed and validated for analysis of agomelatine in human plasma. Fluoxetine was used as an internal standard for agomelatine. A Betasil C18 (4.0 × 100 mm, 5 µm) column provided chromatographic separation of analytes followed by detection with mass spectrometry. The method involves simple isocratic chromatographic conditions and mass spectrometric detection in the positive ionization mode using an API‐4000 system. The proposed method has been validated with linear range of 0.050–8.000 ng/ml for agomelatine. The intra‐run and inter‐run precision values are within 12.12% and 9.01%, respectively, for agomelatine at the lower limit of quantification level. The overall recovery for agomelatine and fluoxetine was 67.10% and 72.96%, respectively. This validated method was used successfully for analysis of plasma samples from a pharmacokinetic study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A single LC–MS/MS assay has been developed and validated for the simultaneous determination of metformin and dapagliflozin in human plasma using ion‐pair solid‐phase extraction. Chromatographic separation of the analytes and their internal standards was carried out on a reversed‐phase ACE 5CN (150 × 4.6 mm, 5 μm) column using acetonitrile–15 mm ammonium acetate, pH 4.5 (70:30, v/v) as the mobile phase. To achieve higher sensitivity and selectivity for the analytes, mass spectrometric analysis was performed using a polarity switching approach. Ion transitions studied using multiple reaction monitoring mode were m/z 130.1 [M + H]+/60.1 for metformin and m/z 467.1 [M + CH3COO]?/329.1 for dapagliflozin in the positive and negative modes, respectively. The linear calibration range of the assay was established from 1.00 to 2000 ng/mL for metformin and from 0.10 to 200 ng/mL for dapagliflozin to achieve a better assessment of the pharmacokinetics of the drugs. The limit of detection and limit of quantitation for the analytes were 0.39 and 1.0 ng/mL for metformin and 0.03 and 0.1 ng/mL for dapagliflozin, respectively. There was no interference of plasma matrix obtained from different sources, including hemolyzed and lipemic plasma. The method was successfully applied to study the effect of food on the pharmacokinetics of metformin and dapagliflozin in healthy subjects.  相似文献   

19.
An accurate and precise method was developed and validated using LC‐MS/MS to quantify dutasteride in human plasma. The analyte and dutasteride‐13C6 as internal standard (IS) were extracted from 300 μL plasma volume using methyl tert‐butyl ether–n‐hexane (80:20, v/v). Chromatographic analysis was performed on a Gemini C18 (150 × 4.6 mm, 5 µm) column using acetonitrile–5 mm ammonium formate, pH adjusted to 4.0 with formic acid (85:15, v/v) as the mobile phase. Tandem mass spectrometry in positive ionization mode was used to quantify dutasteride by multiple reaction monitoring. The entire data processing was done using Watson LIMSTM software, which provided excellent data integrity and high throughput with improved operational efficiency. The calibration curve was linear in the range of 0.1–25 ng/mL, with intra‐and inter‐batch values for accuracy and precision (coefficient of variation) ranging from 95.8 to 104.0 and from 0.7 to 5.3%, respectively. The mean overall recovery across quality controls was ≥95% for the analyte and IS, while the interference of matrix expressed as IS‐normalized matrix factors ranged from 1.01 to 1.02. The method was successfully applied to support a bioequivalence study of 0.5 mg dutasteride capsules in 24 healthy subjects. Assay reproducibility was demonstrated by reanalysis of 103 incurred samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The aim of this study was to develop an analytical method to determine mequitazine in rat plasma and urine. Mequitazine was separated by UPLC–MS/MS equipped with a Kinetex core–shell C18 column (50 × 2.1 mm, 1.7 μm) using 0.1% (v/v) aqueous formic acid and acetonitrile containing 0.1% (v/v) formic acid as a mobile phase by gradient elution at a flow rate of 0.3 mL/min. Quantitation of this analysis was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique operating in multiple reaction monitoring positive ion mode. Mass transitions were m/z 323.3 → 83.1 for mequitazine and 281.3 → 86.3 for imipramine as internal standard. Liquid–liquid extraction with ethyl acetate and protein precipitation with methanol were used for sample extraction. Chromatograms showed that the method had high resolution, sensitivity and selectivity without interference from plasma constituents. Calibration curves for mequitazine in rat plasma and urine were 0.02–200 ng/mL, showing excellent linearity with correlation coefficients (r2) >0.99. Both intra‐ and inter‐day precisions (CV%) were within 4.08% for rat plasma and urine. The accuracies were 99.58–102.03%. The developed analytical method satisfied the criteria of international guidance. It could be successfully applied to pharmacokinetic studies of mequitazine after oral and intravenous administration to rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号