共查询到20条相似文献,搜索用时 15 毫秒
1.
Photodynamic therapy (PDT) has been received broad attentions as a cancer treatment, and fullerenes are potential photosensitizer owing to their unique electronic structures. However, fullerenes show insolubility in water for the special structure, which will induce aggregation to hinder the production of reactive oxygen species (ROS). Furthermore, the size of fullerenes is not conducive to reach the tumors through the enhanced permeability and retention (EPR) effect. Herein, a polyhydroxy fullerene-loaded metal-organic framework is designed and prepared to address the mentioned problems encountering with fullerenes as photosensitizers. The nanocomposite PHF@ZIF-8, which is synthesized by a simple one-pot method, displays great biocompatibility and outstanding photodynamic performance under the 448 nm laser irradiation. This work provides strong evidence for PHF@ZIF-8 as a promising photosensitizer candidate. 相似文献
2.
《Electrophoresis》2017,38(24):3059-3078
In the field of analytical chemistry, sample preparation and chromatographic separation are two core procedures. The means by which to improve the sensitivity, selectivity and detection limit of a method have become a topic of great interest. Recently, porous organic frameworks, such as metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in this research area because of their special features, and different methods have been developed. This review summarizes the applications of MOFs and COFs in sample preparation and chromatographic stationary phases. The MOF‐ or COF‐based solid‐phase extraction (SPE), solid‐phase microextraction (SPME), gas chromatography (GC), high‐performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) methods are described. The excellent properties of MOFs and COFs have resulted in intense interest in exploring their performance and mechanisms for sample preparation and chromatographic separation. 相似文献
3.
The new MOF Ga‐MIL‐53‐PDA [Ga(OH)(O2C‐C8H8‐CO2)] · H2O ( 1 ) was synthesized by a hydrothermal reaction of gallium nitrate, 1,4‐phenylenediacetic acid (H2PDA) and sodium hydroxide at 100 °C for 24 h. The product is a structural analogue of the archetypical MIL‐53 framework. Its crystal structure was determined by Rietveld refinement of powder X‐ray diffraction (PXRD) data. Furthermore 1,4‐phenylenedipropionic acid (H2PDP) was employed for further synthesis, which resulted in the dense layered coordination polymers [Ga2(OH)4(O2C‐C10H12‐CO2)] ( 2 ) and [Ga(OH)(O2C‐C10H12‐CO2)] ( 3 ), for which accurate structural models could be established. All compounds were fully characterized and tested regarding potential breathing behavior. Most remarkably, Ga‐MIL‐53‐PDA showed a subtle flexibility upon de/‐rehydration also confirming its porosity, but no drastic structural changes were observed. 相似文献
4.
Shamaila Iram Muhammad Imran Farah Kanwal Zafar Iqbal Farah Deeba Qazi Javed Iqbal 《无机化学与普通化学杂志》2019,645(1):50-56
BiIII‐MOFs 1 – 4 were prepared via solvothermal method using four organic linkers; 2‐mercapto‐3‐methyl‐4‐thiazoleacetic acid (H2MMTA), 2,6‐naphthalenedicarboxylic acid (2,6‐NDA), 4,6‐dihydroxy‐2‐mercaptopyrimidine (H2DMP), and 4‐mercaptobenzoic acid (H2MBA), respectively. The resulting MOFs were structurally/morphologically characterized by UV/Vis, AAS/ICP‐MS, Fourier transform infrared spectroscopy (FT‐IR), 1H NMR, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and powder X‐ray diffraction technique. All these MOFs showed good luminescence properties exhibiting blue luminescence. N2 gas adsorption isotherms of 1 – 4 confirmed the porosity of these frameworks. In order to evaluate the effect of metal ion upon chelation, the free organic linkers and respective MOFs were screened for their antibacterial potential against some pathogenic bacteria and appreciable activity was observed. 相似文献
5.
6.
Three new ZnII coordination polymers, [Zn(bpe)(HL)2(H2O)]n ( 1 ), {[Zn(bpe)(L)] · H2O}n ( 2 ), and [Zn2Ca(bpe)(HL)2(L)2]n ( 3 ) [H2L = 5‐methoxyisophthalic acid and bpe = 1,2‐dis(4‐pyridyl) ethylene], were hydrothermally synthesized under different pH values and bases. Their structures were determined by single‐crystal X‐ray diffraction and further characterized by elemental analyses and IR spectroscopy. Polymer 1 is formed at pH = 4 and has a 1D chain structure. These 1D chains are linked by hydrogen bonds to afford a 1D double chain and further to form a threefold interpenetrating network. At pH = 7, a 2D layer structure of 2 with sql topology is formed. By using calcium hydroxide as base for the synthesis of 3 , a 3D network with pcu topology is obtained. These structural differences among 1 – 3 indicate that pH value and the identity of the base play important role in defining the overall structures of metal‐organic frameworks. In addition, the fluorescent properties of 1 – 3 are discussed. 相似文献
7.
8.
This review aims to provide a summary of the progress in organic small molecular fluorescent dyes for photodynamic therapy in recent years and it is classified according to the structures of dyes including cyanines, phthalocyanine, BODIPYs and other agents. 相似文献
9.
The outstanding properties such as large surface area, diverse structure, and accessible tunnels and cages make metal organic frameworks (MOFs) attractive as novel separation media in separation sciences. However, the utilization of MOFs in EKC has not been reported before. Here we show the exploration of zeolitic imidazolate framework‐8 (ZIF‐8), one of famous MOFs, as the pseudostationary phase (PSP) in EKC. ZIF‐8 nanocrystals were used as the PSP through dispersing in the running buffer (20 mM phosphate solution containing a 1% v/v methanol (pH 9.2)) to enhance the separation of the phenolic isomers (p‐benzenediol, m‐benzenediol, o‐benzenediol, m‐nitrophenol, p‐nitrophenol, and o‐nitrophenol). ZIF‐8 nanocrystals in the running buffer were negatively charged, and interacted with the phenolic hydroxyl groups of the analytes, and thus greatly improved the separation of the phenolic isomers. Inclusion of 200 mg L?1 ZIF‐8 in the running buffer as the background electrolyte gave a baseline separation of the phenolic isomers within 4 min. The relative standard deviations for five replicate separations of the phenolic isomers were 0.2–1.1% for migration time and 4.5–9.7% for peak area. The limits of detection varied from 0.44 to 2.0 mg L?1. The results show that nanosized MOFs are promising for application in EKC. 相似文献
10.
Magnetic metal–organic framework MIL‐100(Fe) microspheres for the magnetic solid‐phase extraction of trace polycyclic aromatic hydrocarbons from water samples 下载免费PDF全文
Fuyou Du Qun Qin Jianchao Deng Guihua Ruan Xianqing Yang Jianping Li 《Journal of separation science》2016,39(12):2356-2364
In this work, a magnetic metal–organic framework designated as MIL‐100(Fe) was prepared and applied as a magnetic solid‐phase extraction sorbent for the determination of trace polycyclic aromatic hydrocarbons in environmental water samples by coupling with high‐performance liquid chromatography and fluorescence detection. The magnetic microspheres exhibited large surface areas and high extraction ability, making them excellent candidates as sorbents for enrichment of trace polycyclic aromatic hydrocarbons. Under the optimized experimental conditions, good sensitivity levels were achieved with low detection limits ranging from 32 to 2110 pg/mL and good linearities with correlation coefficients higher than 0.9990 for the investigated 13 polycyclic aromatic hydrocarbons. The proposed method has been validated in the analysis of real water samples with mean recoveries in the range of 81.4–126.9% at four spiked levels and the relative standard deviations in the range of 1.3–17.0%. The magnetic MIL‐100(Fe) microspheres were stable enough for 150 extractions without a significant loss of extraction performance. 相似文献
11.
《Arabian Journal of Chemistry》2022,15(3):103643
It is of great significance to accurately monitor the alkaline phosphatase (ALP) level as it plays an important role in living body activities. Herein, we develop a COF- MnO2 system for ALP activity detection via the dynamic regulating the MnO2 nanosheets content. MnO2 nanosheets with oxidase-mimicking property can oxide the colorless 3,3′,5,5′-Tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB). The hexagonal structure and ordered mesoporous channels of DMTP-TAPB COF provide excellent space to accommodate the product oxTMB. The confinement of the dye molecules into COF structure leads to enhance color change and obvious fluorescence quench of the sensing system. The fluorescence quenching and color change dependent on the ALP level as it can dynamic regulate the MnO2 content via the enzymatic hydrolysis of ascorbate-2-phosphate. Therefore, a COF-MnO2 based dual signal sensing platform is successfully constructed to detect ALP activity, giving detection limit of 0.11 U L-1 and 0.23 U L-1 for fluorescence and colorimetric procedures, respectively. The practical application of the designed sensing platform is verified through the detection of ALP activity in serum samples, and satisfactory results are obtained. 相似文献
12.
Qiaoqin Li Xiaoqin Wang Nana Yang Fan He Yufei Yang Bohua Wu Jia Chu Anning Zhou Shanxin Xiong 《无机化学与普通化学杂志》2019,645(16):1022-1030
Hydrangea‐like NiCo‐based bimetal‐organic frameworks (NiCo‐MOF) are synthesized in DMF‐EtOH solution via a solvothermal method, using 4,4′‐biphenyldicarboxylic acid as a ligand. NiCo‐MOF having a highest capacity of 1056.6 F · g–1 at 0.5 A · g–1 and 457.7 F · g–1 even at 10 A · g–1 is achieved at a Ni/Co/BPDC molar ratio of 1:1:1, a temperature of 170 °C and a reaction time of 12 hours. It exhibits secondary 3D microsphere structures assembled by primary 2D nanosheet structures, good crystalline structure and good thermal stability below 350 °C in air. All the electrochemical data show that NiCo‐MOF has the pros and cons as supercapacitor electrode materials in aqueous electrolytes. On the one hand, NiCo‐MOF has a high capacity even at a high current density, low internal resistance, charge‐transfer resistance and ion diffusion impendence, owing to the ordered coordination structure, 2D nanosheet structure and 3D assembled microsphere structure of NiCo‐MOF. On the other hand, the cycling stability and rate capability are not ideal enough due to the hydrolysis of coordination bonds in aqueous electrolytes, especially, in alkaline solution. The good dispersion and high electrochemical activity of metal ions bring a high capacity for NiCo‐MOF, but they result in the poor stability of NiCo‐MOF. In the future work, finding a suitable organic electrolyte is an effective way to enhance the cycling stability of NiCo‐MOF as well as deriving more stable skeleton materials from NiCo‐MOF. 相似文献
13.
As a new type of highly ordered porous crystalline material, metal‐organic frameworks (MOFs) have been extensively studied in many fields due to their high specific surface area and porosity, flexible modifiability and tailorability. After nearly 20 years of development, the synthesis of MOF materials has gradually evolved from exploration and trial to precise design. The synthesis method has also evolved from an early one‐step synthesis to the coexistence of various synthesis strategies, including functional‐oriented microstructural design optimization, pore size adjustment, and secondary structural unit modification, enabling MOF materials to expand their potential applications in many fields. In this review, we mainly discuss the pore regulation of function‐oriented MOF through different synthesis strategies, including (1) direct synthesis, (2) post‐synthesis modification (PSM), (3) building block replacement (BBR), (4) pore space partition (PSP), (5) construction of multi‐mesoporous MOF, (6) dynamic septal ligand insertion, and discuss the relationship between related performance optimization through framework structure and pore environment/size optimization. 相似文献
14.
Alexander Zurawski Frauke Hintze Klaus Müller‐Buschbaum Prof. Dr. 《无机化学与普通化学杂志》2010,636(7):1333-1338
Metals with low melting points like gallium (mp. 30 °C) prove a new approach for the synthesis of MOFs. As the melting point of gallium is even lower than of the linker ligand imidazole, formation of the MOF , Im– = imidazolate anion, ImH = imidazole, can be achieved by reaction of a melt of the referring metal with a melt of the ligand. Gallium is oxidised in the reaction, and hydrogen gas and the imidazolate amide as colourless single crystalline product are formed. At the melting point of imidazole (mp. 88–90 °C) two liquid phases are observed. Phase separation lasts until the reaction, starting at 120 °C, consumes the liquid reagents. We consider this a reaction on the phase border between the liquid phases as no mixing is observed. constitutes of a three‐dimensional framework structure with a 3,6 topology that is built of two Kagome nets sharing common connectivity points. Each Ga3+ ion is octahedrally coordinated by six nitrogen atoms of imidazolate and imidazole ligands. The framework exhibits a limited porosity of 8.5 % of accessible space and a diameter of 376–509 pm for the pore windows. 相似文献
15.
《Arabian Journal of Chemistry》2023,16(4):104583
Resistance to antimicrobial drugs is an impending healthcare problem of growing significance. In the post-antibiotic era, there is a huge push to develop new tools for effectively treating bacterial infections. Photodynamic therapy involves the use of a photosensitizer that is activated by the use of light of an appropriate wavelength in the presence of oxygen. This results in the generation of singlet oxygen molecules that can kill the target cells, including cancerous cells and microbial cells. Photodynamic therapy is shown to be effective against parasites, viruses, algae, and bacteria. To achieve high antimicrobial activity, a sufficient concentration of photosensitizer should enter the microbial cells. Generally, photosensitizers tend to aggregate in aqueous environments resulting in the weakening of photochemical activity and lowering their uptake into cells. Nanocarrier systems are shown to be efficient in targeting photosensitizers into microbial cells and improve their therapeutic efficiency by enhancing the internalization of photosensitizers into microbial cells. This review aims to highlight the basic principles of photodynamic therapy with a special emphasis on the use of nanosystems in delivering photosensitizers for improving antimicrobial photodynamic therapy. 相似文献
16.
Herein, a novel sensor (TPE‐UiO‐66) was designed via anchoring monodentate tetraphenylethylene (TPE) onto UiO‐66 framework. The combination of the distinct aggregation‐induced emission (AIE) of TPE and the easy replacement of monodentate linker by guest phosphate, makes TPE‐UiO‐66 an ideal platform for sensing HPO42–. Experimental results indicate that TPE‐UiO‐66 can selectively sense HPO42– from other common anions. The limit of detection (LOD) can reach to 5.56 μmol·L–1 and more importantly, TPE‐UiO‐66 also exhibits an ultra‐fast equilibrium response of 2 min, far faster than those of other sensors especially for UiO‐66‐NH2. The combination of experimental analysis and density functional theory (DFT) calculations demonstrates that the high selectivity, high sensitivity and fast response of HPO42– detection by TPE‐UiO‐66 can be attributed to the stronger coordination interactions of HPO42– with Zr‐O cluster of UiO‐66 than that of TPE molecule. This study not only provides a potential probe for phosphate, but also represents a novel strategy to design stimuli‐responsive fluorescent MOF‐based sensors via using monodentate AIEgens. 相似文献
17.
《中国化学快报》2020,31(9):2309-2313
Conductive MOFs could exhibit full potential as integrated electrode materials for supercapacitors without interference from additional conductive additives. Here we report an anionic Co-MOF cage with zeolite framework, which was balanced by the redox-active guest [Co(H2O)6]2+ and protonated [(CH3)2NH2]2+ ions. Benefit from the unique ion skeleton structure, Co-MOF exhibits a conductivity higher than most of reported MOFs with the value of 1.42 × 10-3 S/cm, which can be directly fabricated as electrode for supercapacitors. A maximum specific capacitance of 236.2 F/g can be achieved at a current density of 1 A/g of Co-MOF. Additionally, the electric performance and morphology of this Co-MOF can be modified by cetyltrimethylammonium bromide (CTAB) and the maximum specific capacitance could increase up to 334 F/g at 1 A/g when the ratio of ligand and CTAB is 1:6 (Co-MOF-6). Furthermore, the specific capacitance can retain at 64.04% and 77.92% of the initial value after 3000 cycles of Co-MOF and Co-CTAB-6, respectively. Obviously, the addition of CTAB further improves both capacitance and cycle stability. 相似文献
18.
Polymer‐based monolithic column with incorporated chiral metal–organic framework for enantioseparation of methyl phenyl sulfoxide using nano‐liquid chromatography 下载免费PDF全文
A new approach to the preparation of enantioselective porous polymer monolithic columns with incorporated chiral metal–organic framework for nano‐liquid chromatography has been developed. While no enantioseparation was achieved with monolithic poly(4‐vinylpyridine‐co‐ethylene dimethacrylate) column, excellent separations of both enantiomers of (±)‐methyl phenyl sulfoxide were achieved with its counterpart prepared after admixing metal–organic framework [Zn2(benzene dicarboxylate)(l‐lactic acid)(dmf)], which is synthesized from zinc nitrate, l ‐lactic acid, and benzene dicarboxylic acid in the polymerization mixture. These novel monolithic columns combined selectivity of the chiral framework with the excellent hydrodynamic properties of polymer monoliths, may provide a great impact on future studies in the field of chiral analysis by liquid chromatography. 相似文献
19.
Hongliang Tan Qian Li Zhengchen ZhouChanjiao Ma Yonghai SongFugang Xu Li Wang 《Analytica chimica acta》2015
Metal-organic frameworks (MOFs) with tunable structures and properties have recently been emerged as very interesting functional materials. However, the catalytic properties of MOFs as enzymatic mimics remain to be further investigated. In this work, we for the first time demonstrated the peroxidase-like activity of copper-based MOFs (HKUST-1) by employing thiamine (TH) as a peroxidase substrate. In the presence of H2O2, HKUST-1 can catalyze efficiently the conversion of non-fluorescent TH to strong fluorescent thiochrome. The catalytic activity of HKUST-1 is highly dependent on the temperature, pH and H2O2 concentrations. As a peroxidase mimic, HKUST-1 not only has the features of low cost, high stability and easy preparation, but also follows Michaelis–Menten behaviors and shows stronger affinity to TH than horseradish peroxidase (HRP). Based on the peroxidase-like activity of HKUST-1, a simple and sensitive fluorescent method for TH detection has been developed. As low as 1 μM TH can be detected with a linear range from 4 to 700 μM. The detection limit for TH is about 50 fold lower than that of HRP-based fluorescent assay. The proposed method was successfully applied to detect TH in tablets and urine samples and showed a satisfactory result. We believed that the present work could improve the understanding of catalytic behaviors of MOFs as enzymatic mimics and find out a wider application in bioanalysis. 相似文献
20.
Shaolei Yang Chunyan Chen Zhihong Yan Qingyun Cai Shouzhuo Yao 《Journal of separation science》2013,36(7):1283-1290
Metal‐organic frameworks, a new class of materials with high surface area and great porosity, have been widely applied in gas sorption. It is generally known that metal‐organic framework 5 cannot be applied in aqueous phase since it is water sensitive. However, this work reveals that the derived material of metal‐organic framework 5 is a good SPE sorbent that can be applied to aqueous phases. Metal‐organic framework 5 was prepared and used as a SPE sorbent for the determination of polycyclic aromatic hydrocarbons in environmental matrices coupling with HPLC. The water treatment induced changes in the properties were investigated in detail. Even though metal‐organic framework 5 is conversed to a second phase after water treatment, it still shows high extraction ability. Under the optimized experimental conditions, good sensitivity levels were achieved with low LODs ranging from 0.4 to 4.0 ng L?1 and a linearity of 0.004–20 μg L?1 (R2 > 0.996) for the investigated polycyclic aromatic hydrocarbons. The method has been validated in the analysis of real water samples with recoveries in the range of 80.2–120.2% and RSDs in the range of 0.5–11.7%. 相似文献