首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过可控水热法,制备出层状、花形和棒状钛酸铋(Bi4Ti3O12,BIT)纳米结构。通过X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)观测其结构和形貌特征。XRD图显示,所制备的样品为层状钙钛矿结构。FESEM结果表明,通过控制水热过程的反应参数可以得到不同形貌的纳米粉体。紫外-可见漫反射光谱(UV-Vis DRS)表明BIT样品的带隙能约为2.63~2.95 eV。利用可见光(λ>420 nm)照射下的甲基橙降解实验评价了BIT样品的光催化性能。结果表明,BIT的光催化活性比掺氮TiO2(N-TiO2)高得多。所制备的层状BIT纳米结构光催化效率最高,经可见光照射360 min,甲基橙溶液的降解率可达95.0%。同时还研究了结构和形貌对不同条件下制备的BIT样品光催化活性的影响。  相似文献   

2.
通过可控水热法,制备出层状、花形和棒状钛酸铋(Bi4Ti3O12,BIT)纳米结构。通过X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)观测其结构和形貌特征。XRD图显示,所制备的样品为层状钙钛矿结构。FESEM结果表明,通过控制水热过程的反应参数可以得到不同形貌的纳米粉体。紫外-可见漫反射光谱(UV-VisDRS)表明BIT样品的带隙能约为2.63~2.95eV。利用可见光(λ>420nm)照射下的甲基橙降解实验评价了BIT样品的光催化性能。结果表明,BIT的光催化活性比掺氮TiO2(N-TiO2)高得多。所制备的层状BIT纳米结构光催化效率最高,经可见光照射360min,甲基橙溶液的降解率可达95.0%。同时还研究了结构和形貌对不同条件下制备的BIT样品光催化活性的影响。  相似文献   

3.
The initial oxidation of magnesium at oxygen partial pressures between 1.3 × 10?8 and 1.3 × 10?5 Pa and at temperatures ranging from 273 to 550 K has been investigated in situ with X‐ray photoelectron spectroscopy (XPS), ellipsometry and high resolution elastic recoil detection analysis (HERDA). Quantitative analysis of the XPS spectra showed a clear oxygen deficiency with respect to MgO for the initial oxide. HERDA measurements confirmed this relatively low oxygen content in the thin oxide layers formed. Ellipsometry measurements showed that the electronic structure of the initially formed oxide differs significantly from that of bulk MgO. The band gap values at room temperature for the oxide layers investigated are clearly smaller than the value for bulk MgO. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
《Analytical letters》2012,45(2):123-128
Abstract

An automated system for the determination of arsenic, selenium, antimony, bismuth and tin is described. These elements and their compounds are reduced with sodium borohydride to the corresponding hydride. Sensitivity of the automated system is comparable and in most cases better than the manual technique. The automated method was found superior to the manual with respect to reproducibility and ease of operation.  相似文献   

5.
The effect of ultrasonic vibrations applied in situ on the formation of W–WO interface during the exposure of a pure tungsten foil to a low‐temperature oxygen plasma is investigated by photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS). The tungsten surface was exposed to oxygen plasma at different time intervals and the evolution of the interface formation was studied by angle‐resolved XPS. We show that oxidation without ultrasonic vibrations leads to the formation of a thin oxide film whose growth kinetics is governed by an island growth mechanism. On the other hand, oxide growth in the presence of ultrasonic treatment (UST) appears to follow a layer‐by‐layer growth mode with a distinctly sharper W–WO interface. TOF‐SIMS analysis in this case revealed a reduced amount of water bonded in the film, which suggests an increase in the film's packing density. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Enargite, a copper arsenic sulfide with the formula Cu3AsS4 is of environmental concern due to its potential to release toxic arsenic species. The oxidation and dissolution of enargite are governed by the composition and chemical state of the outermost surface layer. Qualitative and quantitative analysis of the enargite surface can be initially obtained on the basis of X‐ray photoelectron spectroscopy (XPS) binding energy and intensity data. However, a more precise determination of the chemical state of the principal elements of enargite (copper, arsenic and sulfur) in the altered surface layer and in the bulk of the mineral requires a combined analysis based on XPS photoelectron lines and the corresponding X‐ray excited Auger lines. On the basis of results obtained on natural and synthetic enargite samples and on standards of sulfides and oxides, the Auger parameter α′ of different compounds was calculated and the Wagner chemical state plots were drawn for arsenic, copper and sulfur. Arsenic in enargite is found to be in a chemical environment similar to that of arsenides or elemental arsenic, whereas copper in enargite is in a chemical state that corresponds to copper sulfide, Cu2S, for all samples irrespective of surface treatment (natural or freshly cleaved). Only sulfur changed from a chemical state similar to that of copper or iron sulfide in freshly cleaved samples to another state in natural enargite in the as‐received state. Thus, it is the sulfur atom at the surface of enargite that is most susceptible to changes in the enargite surface state and composition. A more detailed interpretation of this behavior, based on differences in the initial and final state effects, is proposed here. The concept of Auger parameter and chemical state plot, used here for the first time for investigating enargite, has proved to be a method to unambiguously assign the chemical state of the principal elements copper, arsenic and sulfur in these minerals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Difference X‐ray photoelectron spectroscopy (D‐XPS) revealed the surface oxidation process of a diamond‐like carbon (DLC) film. Evaluation of surface functional groups on DLC solely by the C 1s spectrum is difficult because the spectrum is broad and has a secondary asymmetric lineshape. D‐XPS clarified the subtle but critical changes at the DLC surface caused by wet oxidation. The hydroxyl (C―OH) group was dominant at the oxidized surface. Further oxidized carbonyl (C?O) and carboxyl (including carboxylate) (COO) groups were also obtained; however, the oxidation of C?O to COO was suppressed to some extent because the reaction required C―C bond cleavage. Wet oxidation cleaved the aliphatic hydrogenated and non‐hydrogenated sp2 carbon bonds (C―H sp2 and C―C sp2) to create a pair of C―OH and hydrogenated sp3 carbon (C―H sp3) bonds. The reaction yield for C―H sp2 was superior at the surface, suggesting that the DLC film was hydrogen rich at the surface. Oxidation of aromatic sp2 rings or polycyclic aromatic hydrocarbons such as nanographite to phenols did not occur because of their resonance stabilization with electron delocalization. Non‐hydrogenated sp3 carbon (C―C sp3) bonds were not affected by oxidation, suggesting that these bonds are chemically inert. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Quantitative chemical state X‐ray photoelectron spectroscopic analysis of mixed nickel metal, oxide, hydroxide and oxyhydroxide systems is challenging due to the complexity of the Ni 2p peak shapes resulting from multiplet splitting, shake‐up and plasmon loss structures. Quantification of mixed nickel chemical states and the qualitative determination of low concentrations of Ni(III) species are demonstrated via an approach based on standard spectra from quality reference samples (Ni, NiO, Ni(OH)2, NiOOH), subtraction of these spectra, and data analysis that integrates information from the Ni 2p spectrum and the O 1s spectra. Quantification of a commercial nickel powder and a thin nickel oxide film grown at 1‐Torr O2 and 300 °C for 20 min is demonstrated. The effect of uncertain relative sensitivity factors (e.g. Ni 2.67 ± 0.54) is discussed, as is the depth of measurement for thin film analysis based on calculated inelastic mean free paths. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The initial steps in the formation of thin films have been investigated by analysis of the peak shape (both inelastic background and elastic contributions) of X‐ray photoelectron spectra. Surface coverage and averaged height of the deposited particles have been estimated for several overlayers (nanometre range) after successive deposition cycles. This study has permitted the assessment of the type of nucleation and growth mechanisms of the films. The experiments have been carried out in situ in the preparation chamber of an XPS spectrometer. To check the performance of the method, several materials (i.e. cerium oxide, vanadium oxide and cadmium sulfide) have been deposited on different substrates using a variety of preparation procedures (i.e. thermal evaporation, ion beam assisted deposition and plasma enhanced chemical vapour deposition). It is shown that the first deposited nuclei of the films are usually formed by three‐dimensional particles whose heights and degree of surface coverage depend on the chemical characteristics of the growing thin film and substrate materials, as well as the deposition procedure. It is concluded that XPS peak shape analysis can be satisfactorily used as a general method to characterize morphologically the first nanometric moieties that nucleate a thin film. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Effects of protons on chemical structure and optical properties of polytetrafluoroethylene (PTFE) film were investigated in the energy range of 60 to 170 keV to simulate the effects of space proton irradiation environment. The results show that for PTFE film irradiated with protons, the change in C1s spectrum, along with those in F1s and the FT‐IR spectrum after irradiation, demonstrates that two processes take place simultaneously. One is substitution in which carbon to fluorine bonds can be broken by the protons and some positions of fluorine are occupied by active protons; the other is the carbonification, which results in the change of surface color and an increase of carbon percentage on the irradiated surface. For the PTFE film irradiated with 150 keV protons, the spectral absorbance ΔAλ in the wavelengths longer than 300 nm increase unmonotonously with proton fluence, and an abnormally recovery decrease of the ΔAλ with the increase of fluence in the range of 5×1013 cm?2 to 1015 cm?2 is observed. The change of the ΔAλ could be related to the competition of the carbonification and the substituting effect. The carbonification increases the ΔAλ, while the substituting increases the amorphousness amount, leading to an increase in the transparency of the film. In addition, the creation of radicals can also contribute to the increase in absorbance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
In the paper, the glow discharge optical emission spectroscopy, X‐ray photoelectron spectroscopy, scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy results of a commercial purity titanium grade 2 after plasma electrolytic oxidation (PEO), also known as micro arc oxidation (MAO), are presented. The PEO treatment was performed in the electrolyte containing concentrated (85%) phosphoric acid with copper nitrate at the voltage of 450 ± 10 V for 1 min. For the electrolyte, copper nitrate addition from 300 to 600 g/l was used. Porous coatings of specific properties were obtained. The measurements results allow to state that the copper and nitrogen ions can be introduced into the surface layer formed on pure titanium by the plasma electrolytic oxidation. The distributions of these elements were detected to depend on the electrolyte composition, with the highest amounts revealed in the coating created in the electrolyte containing 600 g Cu(NO3)2 in 1 l H3PO4. Three sub‐layers of the coating, displayed in this work by two models, were developed in the study. The analysis performed shows that under the PEO treatment in each of the electrolytes used, the formation of coating with the top sub‐layers always enriched in copper compounds was found. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
表面修饰二氧化锡纳米微晶的制备与表征   总被引:10,自引:0,他引:10  
制备了硅烷偶联剂KH-570表面修饰的SnO2纳米微晶,通过FT-IR、XPS、TEM和TG-DTA对其结构和表面特性进行表征和研究. FT-IR和XPS分析结果确证了KH-570与SnO2表面是以化学键合或物理吸附方式相结合,粒子表面存在酯基等有机官能团的红外吸收特征;观测到KH-570中Si原子的Si2s和Si2p谱线. TEM分析表明,表面修饰反应增强了SnO2纳米微晶的疏水性和分散性.由XPS和TG的实测数据探讨了纳米粒子具有较低包覆量的可能原因.  相似文献   

13.
We present data from the surface analysis of a mineral mixture of chalcopyrite, pyrite, and sphalerite, elucidating surface reactions occurring during grinding and flotation. Flotation tests are also performed on the mixture, carried out in the presence of collector (SIBX) and also in the absence and presence of sodium bisulphite (NaHSO3), a gangue sulphide mineral depressant. X‐ray photoelectron spectroscopy (XPS) studies on the ground mineral sample prior to flotation indicate that the mineral feed is heavily oxidised, especially the sphalerite in the mixture. Flotation recovery data clearly shows the effect of this oxidation, with the mineral recoveries of all three phases being lower than those observed in single mineral studies. In addition, the flotation recoveries show the effect of the inadvertent copper activation of pyrite and sphalerite, and the effect of bisulphite in reducing the flotation of sphalerite and pyrite in the mixture. Time of flight secondary ion mass spectrometry(ToF‐SIMS) data indicates that the depressing effect of bisulphite is due to the removal of copper and sulphur‐like species from the surface of pyrite and sphalerite and a consequent increase in the oxidation of these minerals. ToF‐SIMS data also indicates that the low recovery of pyrite and chalcopyrite in the absence of collector is most likely due to precipitation of zinc hydroxide on the surfaces of these minerals, formed in solution due to copper activation of sphalerite. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy‐efficient photoionization source that produce the reactant ions via soft X‐radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N2, CO2 and N2O and the dopant CH2Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X‐radiation in the negative mode is more selective than the other sources. In air, adduct ions of O2 with H2O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O2 and Cl (upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X‐ray photoionization in different gasses (air, N2 and N2O) and dopants (CH2Cl2, C2H5Br and CH3I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3] and [M + Cl], adduct ions such as [M + N2O2], [M + Br] and [M + I] were detected, and their gas‐phase structures and energetics are investigated by density functional theory calculations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A cloud point extraction procedure was presented for the preconcentration of copper, nickel, zinc and iron ions in various samples. After complexation by 2‐(6‐(1H‐benzo[d]imidazol‐2‐yl)pyridin‐2‐yl)‐1H‐benzo[d]Imidazole (BIYPYBI), analyte ions are quantitatively extracted in Triton X‐114 following centrifugation. 1.0 mol L?1 HNO3 nitric acid in methanol was added to the surfactant‐rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The adopted concentrations for BIYPYBI, Triton X‐114 and HNO3 and bath temperature, centrifuge rate and time were optimized. Detection limits for Cu2+, Fe3+, Zn2+ and Ni2+ ions was 1.4, 2.2, 1.0 and 1.9 ng mL?1, respectively. The preconcentration factors for all ions was 30, while the enrichment factor of Cu2+, Fe3+, Zn2+ and Ni2+ ions was 35, 25, 39 and 30, respectively. The proposed procedure was applied to the analysis of real samples.  相似文献   

16.
Heating (100) silicon at high temperature (say, higher than 850 °C) in H2, cooling to 670–700 °C in the same ambient, and quenching to room temperature in N2 results in environmentally robust, terraced 1 × 1 (100) SiH2. Evidence for this conclusion is based on angle‐resolved x‐ray photoelectron spectroscopy, atomic force microscopy, infrared absorption spectroscopy in the attenuated total reflection mode, thermal programmed desorption, and reflection high‐energy electron diffraction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The syntheses of three mixed ligand chelate copper(II) complexes of the type [Cu(L)(acac)(H2O)]BPh4 where acac=acetyleacetonate; L=N,N‐dimethyl,N′‐benzylethane‐1,2‐diamine ( L1 ), N,N‐dimethyl, N′‐2‐methylbenzylethane‐1,2‐diamine ( L2 ) or N,N‐dimethyl,N′‐2‐chlorobenzylethane‐1,2‐diamine ( L3 ) are reported and characterized by elemental analyses, spectroscopic and molar conductance measurements. The X‐ray structure of complex 1 shows that the central copper atom is placed in a distorted square pyramidal geometry made by acac and diamine chelate in the base and a H2O molecule on the apex. The prepared complexes are fairly soluble in a large number of organic solvents and show positive solvatochromism. Calculations of SMLR (stepwise multiple linear regression) method was utilized to find the best model explaining the observed solvatochromic behavior and showed that among different solvent parameters, donor number (DN) is a dominant factor responsible for the shift in the d‐d absorption band of the complexes to the lower wavenumber with increasing its values. The importance of substituent effect in diamine ligand on the spectral and SMLR measurements is also discussed.  相似文献   

18.
The X‐ray‐induced sample damage during mono XPS analysis of an oxygen‐plasma‐oxidized and subsequently wet‐chemically reduced poly(propylene) film was investigated as a showcase for plasma‐modified or plasma‐deposited samples. By doing this, the degradation index approach as introduced by Beamson and Briggs in the Scienta ESCA300 high‐resolution XPS database of organic polymers has been adopted. As to be expected, the sample degrades by loosing oxygen as revealed by observation of decreasing O/C and C OR/Csum ratios. However, the X‐ray degradation indices are definitely higher than those of conventional reference polymers. Moreover, the C OR/Csum degradation index is significantly higher in comparison with one obtained for the O/C ratio. In that context, there is no difference between the plasma sample and a conventional poly(vinyl alcohol) polymer. It is concluded that for reliable quantitative surface chemical analysis, the quality of spectra in terms of acquisition times must be optimized aimed to a minimization of X‐ray degradation. Finally, it is proposed to describe the photon flux of an X‐ray gun in an XPS experiment, which defines the degradation rate at the end, by using the sample current simply measured with a carefully grounded sputter‐cleaned reference silver sample. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Novel polymeric azomethines of 5,5′‐methylene‐bissalicylaldehyde with two siloxane diamines {H2N(CH2)3(CH3)2SiO[(CH3)2SiO]mSi(CH3)2(CH2)3NH2, where m = 0 or 6.5} were obtained. Their structures were confirmed by elemental and spectral [IR, ultraviolet–visible (UV–vis), and 1H NMR] analysis. The obtained polyazomethines were converted into the chelates of some divalent metals (copper, cobalt, and nickel). The resulting complexes were characterized by electronic and IR spectral measurements, elemental analysis, and thermal studies. From IR and UV–vis studies, the phenolic oxygen and imine nitrogen of the ligand were found to be the coordination sites. The thermogravimetric data indicated that the chelates were less stable than the corresponding ligands and that the thermostability depended on the siloxane segment length and the nature of the metal. Both the macromolecular ligands and the parts of the resultant chelates were soluble in common organic solvents, such as CHCl3, CH2Cl2, dimethylformamide, and dimethyl sulfoxide. The surface compositions of the ligands and some chelates were examined by X‐ray photoelectron spectroscopy. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3169–3179, 2003  相似文献   

20.
Metastable Germanium–tin (GeSn) layers with rather high Sn content between 15% and 18% grown on Si substrates by molecular beam epitaxy were analyzed for the morphological changes on a surface before and after reaching critical layer parameters (thickness, Sn content, and growth temperature) for surface roughening. Atomic‐force microscopy investigations were performed as a function of thickness and separately for varying Sn concentrations in the GeSn layer. Epitaxial growth of metastable, uniform GeSn (15% Sn content) layers is obtained up to a critical thickness which increases from about 80 to above 200 nm by reducing the nominal growth temperature from 160 to 140 °C. Phase separation of the complete layer into tin‐rich surface protrusions and a Ge‐rich matrix takes place beyond the critical thickness. This surface roughening via phase separation was not observed in earlier investigations with lower Sn concentrations (<6%). Tin depletion in the GeSn matrix was confirmed by using energy‐dispersive X‐ray spectroscopy measurements showing residual Sn concentration below 5%. Additionally, creation of droplets with high concentration of tin on the surfaces was confirmed by energy‐dispersive X‐ray spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号