首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiao‐Qing‐Long‐Tang is a traditional Chinese formula used for the treatment of cold syndrome, bronchitis, and nasal allergies for thousands of years. However, the in vivo integrated metabolism of its multiple components and the active chemical constituents of Xiao‐Qing‐Long‐Tang remain unknown. In this study, a method using ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry was established for the detection and identification of the metabolites in human and rat urine after oral administration of Xiao‐Qing‐Long‐Tang. A total of 19 compounds were detected or tentatively identified in human urine samples, including eight prototypes and 11 metabolites. Also, a total of 50 compounds were detected or tentatively identified in rat urine samples, including 15 prototypes and 35 metabolites detected with either a highly sensitive extracted ion chromatogram method or the MSE determination using Mass Fragment software. Our results indicated that phase Ⅱ reactions (e.g. glucuronidation and sulfation) were the main metabolic pathways of flavones, while phase I reactions (e.g. demethylation and hydroxylation) were the major metabolic reaction for alkaloids, lignans, and ginger essential oil. This investigation provided important structural information on the metabolism of Xiao‐Qing‐Long‐Tang and provided evidence to obtain a more comprehensive metabolic profile.  相似文献   

2.
The excretion of neurotransmitter metabolites in normal individuals is of great significance for health monitoring. A rapid quantitative method was developed with ultra-performance liquid chromatography–tandem mass spectrometry. The method was further applied to determine catecholamine metabolites vanilymandelic acid (VMA), methoxy hydroxyphenyl glycol (MHPG), dihydroxy-phenyl acetic acid (DOPAC), and homovanillic acid (HVA) in the urine. The urine was collected from six healthy volunteers (20–22 years old) for 10 consecutive days. It was precolumn derivatized with dansyl chloride. Subsequently, the sample was analyzed using triple quadrupole mass spectrometry with an electrospray ion in positive and multireaction monitoring modes. The method was sensitive and repeatable with the recoveries 92.7–104.30%, limits of detection (LODs) 0.01–0.05 μg/mL, and coefficients no less than 0.9938. The excretion content of four target compounds in random urine samples was 0.20 ± 0.086 μg/mL (MHPG), 1.27 ± 1.24 μg/mL (VMA), 3.29 ± 1.36 μg/mL (HVA), and 1.13 ± 1.07 μg/mL (DOPAC). In the urine, the content of VMA, the metabolite of norepinephrine and adrenaline, was more than MHPG, and the content of HVA, the metabolite of dopamine, was more than DOPAC. This paper detected the levels of catecholamine metabolites and summarized the characteristics of excretion using random urine samples, which could provide valuable information for clinical practice.  相似文献   

3.
For the first time, electromembrane extraction combined with liquid chromatography and tandem mass spectrometry was applied for the determination of urinary benzene, toluene, ethylbenzene, and xylene metabolites. S‐Phenylmercapturic acid, hippuric acid, phenylglyoxylic acid, and methylhippuric acid isomers were extracted from human urine through a supported liquid membrane consisting of 1‐octanol into an alkaline acceptor solution filling the inside of a hollow fiber by application of an electric field. Various extraction factors were investigated and optimized using response surface methodology, the statistical method. The optimum conditions were established to be 300 V applied voltage, 15 min extraction time, 1500 rpm stirring speed, and 5 mM ammonium acetate (pH 10.2) acceptor solution. The method was validated with respect to selectivity, linearity, accuracy, precision, limit of detection, limit of quantification, recovery, and reproducibility. The results showed good linearity (r2 > 0.995), precision, and accuracy. The extract recoveries were 52.8–79.0%. Finally, we applied this method to real samples and successfully measured benzene, toluene, ethylbenzene, and xylene metabolites.  相似文献   

4.
In this study, clostebol metabolic profiles were investigated carefully. Clostebol was administered to one healthy male volunteer. Urinary extracts were analyzed by liquid chromatography quadrupole time‐of‐flight mass spectrometry (MS) using full scan and targeted MS/MS techniques with accurate mass measurement for the first time. Liquid–liquid extraction and direct injection were applied to processing urine samples. Chromatographic peaks for potential metabolites were found by using the theoretical [M–H]? as target ion in full scan experiment, and their actual deprotonated ions were analyzed in targeted MS/MS mode. Fourteen metabolites were found for clostebol, and nine unreported metabolites (two free ones and seven sulfate conjugates) were identified by MS, and their potential structures were proposed based on fragmentation and metabolism pathways. Four glucuronide conjugates were also first reported. All the metabolites were evaluated in terms of how long they could be detected and S1 (4ξ‐chloro‐5ξ‐androst‐3ξ‐ol‐17‐one‐3ξ‐sulfate) was considered to be the long‐term metabolite for clostebol misuse detected up to 25 days by liquid–liquid extraction and 14 days by direct injection analysis after oral administration. Five conjugated metabolites (M2, M5, S2, S6 and S7) could also be the alternative biomarkers for clostebol misuse. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, a reliable ultra‐performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method coupled with an easy, fast and effective sample pretreatment procedure was developed for simultaneous determination of amitraz, chlordimeform, formetanate and their metabolites in human blood. With the procedures of protein precipitation and a phospholipid‐removal step, the endogenous compound interference was significantly reduced, and matrix effects were significantly reduced. The linear ranges of matrix‐matched standard curves were from 0.5 to 1000 ng/mL with coefficients of determination >0.996. Very low limits of detection (0.05–0.12 ng/mL) and limits of quantitation (0.15–0.4 ng/mL) were achieved. Reasonable recoveries ranging from 88.1 to 103.5% were obtained. The intra‐day RSDs ranging from 3.2 to 8.6% and inter‐day RSDs ranging from 4.8 to 9.2% indicated good precision. With the introduction of a phospholipid‐removal step, the ME ranged from 90.1 to 98.5%. The established method was successfully applied to the analysis of a blood sample from a formetanate poisoning case. This method possesses the advantages of high sensitivity, reduced matrix effects and rapidity.  相似文献   

6.
19-Nortestosterone (nandrolone) major metabolites in human urine are excreted as sulfoconjugated and glucuroconjugated forms. A sensitive and selective liquid chromatography/tandem mass spectrometry (LC/MS/MS) method in negative ESI mode was developed for direct quantification of 19-norandrosterone sulfate (19-NAS) and 19-noretiocholanolone sulfate (19-NES). For both sulfoconjugates, the [M−H] ion at m/z 355 and the fragment ion at m/z 97 were used as the precursor and product ions, respectively. The purification method involved a complete and rapid separation of sulfates and glucuronides in two extracts after loading the sample on a weak anion exchange solid phase extraction support (SPE Oasis® WAX). Then, sulfates were separated by LC (Uptisphere® ODB, 150 mm × 3.0 mm, 5 μm) and analyzed on a linear trap and a triple quadrupole mass spectrometer. The lower limit of detection (LLOD) and lowest limit of quantification (LLOQ) were of 100 pg mL−1 and 1 ng mL−1, respectively. Assay validation demonstrated good performances in terms of trueness (92.0-104.9%), repeatability (0.6-7.2%) and intermediate precision (1.3-10.8%) over the range of 1-2500 ng mL−1. Finally, 19-NAS and 19-NES in urine samples collected after intake of 19-norandrostenedione (nandrolone precursor) were quantified. This assay may be easily implemented to separate glucuronide and sulfate steroids from urine specimens prior to quantification by LC/MS/MS.  相似文献   

7.
The metabolism of clemastine was studied in dogs, horses, and humans after a single dose of Tavegyl. The urine collected was extracted by solid-phase extraction or hydrolyzed with beta-glucuronidase and then extracted by liquid-liquid extraction, prior to analysis for unchanged drug and phase I and II metabolites by liquid chromatography/tandem mass spectrometry. The metabolites were identified by their molecular mass and interpretation of the product ion spectra, since no standard substances were available. Unchanged drug was recovered in urine samples from dogs and humans, but not from horses. In dogs and humans, the phase I metabolite, norclemastine, was identified, and clemastine metabolites with one and two additional oxygens were found in all three species. In horses and dogs monohydroxylation on one of the aromatic rings or the adjacent methyl group was favored while, in humans, the additional oxygen was positioned on either the aromatic or the aliphatic part of the structure, and the aliphatic reaction seemed to result in at least three isomers. In the metabolites with two additional oxygens, both the oxygens were found on the aliphatic fragment in humans and dogs, whereas they were situated on the aromatic part of the structure in horses. In human patients, glucuronidated monohydroxyclemastine was recovered, and in urine from horses both mono- and dihydroxyclemastine glucuronides were identified, while phase II metabolites could not be recovered from the dog urine. Clemastine metabolism in dogs and horses has, to our knowledge, not been studied before, and new metabolites from humans are presented in this article. Thus, the metabolites described in the present work have not been previously reported in the literature.  相似文献   

8.
Rupestonic acid, a potential anti‐influenza agent, is an important and characteristic compound in Artemisia rupestris L., a well‐known traditional Uighur medicine for the treatment of colds. In the present study, high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry was used to detect and identify the metabolites in rat urine after oral administration of rupestonic acid. A total of 10 metabolites were identified or partially characterized. The structure elucidations of the metabolites were performed by comparing the changes in accurate molecular masses and fragment ions with those of the parent compound. The results showed that the main metabolites of rupestonic acid in rat urine were formed by oxidation, hydrogenation and glucuronidation. A metabolism pathway was proposed for the first time based on the characterized structures. This metabolism study can provide essential information for drug discovery, design and clinical application of rupestonic acid. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The oxidation of the peptide leucine-enkephalin (YGGFL) induced by the hydroxyl radical (HO*), formed under Fenton-like conditions [Cu (II)/H(2)O(2)], was studied and monitored by LC-MS. The oxidation products identified included products resultant from (a) the insertion of oxygen atoms (1-5), (b) peptide backbone cleavage (short-chain products formed by diamide pathway) and (c) radical-radical crosslinking reactions. In order to identify the modified residues, LC-MS/MS spectra were obtained. The insertion of oxygen atoms into the peptide originated hydroxide, di-hydroxide and/or hydroperoxide derivatives. In addition it was found that the aromatic amino acids are most susceptible to being hydroxylated, while the aliphatic amino acids are more prone to forming hydroperoxides. Oxidation products with double bonds were also identified. The short chain products resulted from the alpha-carbon radical of terminal amino acids (Tyr and Leu). Products resulting from cross-linking reactions between intact carbon-centered peptide radical (with and without one HO group) and a side chain radical (*C(7)H(7)O) were identified. It was found that, although all amino acids residues of the peptide undergo modifications, the N-terminal seems to be prone to oxidative modifications under these conditions.  相似文献   

10.
Oxyresveratrol (trans‐2,4,3′,5′‐tetrahydroxystilbene) is a major compound isolated from Smilax china, a Chinese herbal medicine. The rat urine and bile samples were pretreated by solid‐phase extraction method after oral administration at a dose of 100 mg/kg of oxyresveratrol. Seven metabolites were identified by LC‐MS/MS method with electrospray ionization in negative ion mode. The results indicated that main metabolites of oxyresveratrol were monoglucuronided and monosulfated oxyresveratrol. Based on the results, the metabolic pathway of oxyresveratrol in rat urine and bile was proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Jiao‐Tai‐Wan, which is composed of Coptis Rhizoma and Cinnamon Cortex, has been recently used to treat type 2 diabetes. Owing to lack of data on its prototypes and metabolites, elucidation of the pharmacological and clinically safe levels of this formula has been significantly hindered. To screen more potential bioactive components of Jiao‐Tai‐Wan, we identified its multiple prototypes and metabolites in the plasma of type 2 diabetic rats by ultra high performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry. A total of 47 compounds were identified in the plasma of type 2 diabetic rats, including 22 prototypes and 25 metabolites, with alkaloids constituting the majority of the absorbed prototype components. In addition, this is the first study to detect vanillic acid, gallic acid, chlorogenic acid, protocatechuic acid, 2‐hydroxycinnamic acid, 3‐hydroxycinnamic acid, 4‐hydroxycinnamic acid, and 2‐methoxy cinnamic acid after oral administration of Jiao‐Tai‐Wan. The prototypes from Jiao‐Tai‐Wan were extensively metabolized by demethylation, hydroxylation, and reduction in phase Ⅰ metabolic reactions and by methylation or conjugation of glucuronide or sulfate in phase Ⅱ reactions. This is the first systematic study on the components and metabolic profiles of Jiao‐Tai‐Wan in vivo. This study provides a useful chemical basis for further pharmacological research and clinical application of Jiao‐Tai‐Wan.  相似文献   

12.
l ‐Isocorypalmine, an active alkaloid compound isolated from Rhizoma Corydalis yanhusuo, has been reported to possess biological activity for treating cocaine use disorder. A high‐performance liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry method was established for identification of the metabolites of l ‐isocorypalmine in urine, plasma and feces samples of rats after a single intragastric gavage of l ‐isocorypalmine at a dose of 15 mg/kg. As a result, a total of 21 metabolites (six phase ? metabolites and fifteen phase II metabolites) were detected and tentatively identified by mass spectrometry and fragment ions from tandem mass spectrometry spectra. All metabolites were present in the urine samples, nine metabolites were found in the plasma samples and three metabolites were found in the feces samples. Results indicated that metabolic pathways of l ‐isocorypalmine included oxidation, dehydrogenation, demethylation, sulfate conjugation, and glucuronide conjugation. In addition, glucuronidation was the major metabolic reaction. Results of this investigation could provide significant experimental basis for efficacy, safety and action mechanism of l ‐isocorypalmine, which will be advantageous to new drug development for treating cocaine addiction.  相似文献   

13.
Bilobetin, a natural compound extracted from Ginkgo biloba, has various pharmacological activities such as antioxidation, anticancer, antibacterial, antifungal, anti‐inflammatory, antiviral, and promoting osteoblast differentiation. However, few studies have been conducted and there are no reports on its metabolites owing to its low content in nature. In addition, it has been reported to have potential liver and kidney toxicity. Therefore, this study aimed to identify the metabolites of bilobetin in vitro and in vivo. Bilobetin was incubated with liver microsomes to determine metabolites in vitro, and faeces and urine were collected after oral administration to rats to determine metabolites in vivo. After the samples were processed, they were measured using ultra‐high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry. As a result, a total of 21 and 9 metabolites were detected in vivo and in vitro, respectively. Demethylation, demethylation and loss of water, demethylation and hydrogenation, demethylation and glycine conjugation, oxidation, methylation, oxidation and methylation, and hydrogenation were the main metabolic pathways. This study is the first to identify the metabolites of bilobetin and provides a theoretical foundation for the safe use of bilobetin in clinical application and the development of new drugs.  相似文献   

14.
Palmatine is an isoquinoline alkaloid that has been widely used in China for the treatment of various inflammatory diseases such as gynecological inflammation, bacillary dysentery, enteritis, respiratory tract infection, urinary infection, etc. In the study reported in this paper, a simple and rapid high-performance liquid chromatography/electrospray ionization (ESI) tandem mass spectrometric method (MS/MS) was developed for elucidation of the structures of metabolites of palmatine in rat urine after administration of a single dose (20 mg/kg). The rat urine samples were collected and purified through C18 solid-phase extraction cartridges, and then injected onto a reversed-phase C18 column with 60:40 (v/v) methanol/0.01% triethylamine solution (2 mM, adjusted to pH 3.5 with formic acid) as mobile phase and detected by on-line MS/MS. Identification of the metabolites and elucidation of their structures were performed by comparing changes in molecular masses (DeltaM), retention times and spectral patterns of product ions with those of the parent drug. As a result, six phase I metabolites, the parent drug palmatine and two phase II metabolites were identified in rat urine for the first time.  相似文献   

15.
A simple and efficient multiresidue method using dispersive solid phase extraction and liquid chromatography coupled with tandem mass spectrometry was developed for the targeted analysis of indaziflam and its five metabolites (indaziflam‐diaminotriazine, indaziflam‐carboxylic acid, indaziflam‐triazine indanone, indaziflam‐hydroxyethyl, and indaziflam‐olefin) in pitaya samples (including roots, plants, flowers, peels, pulp, and whole fruit). The analytes were extracted with acetonitrile, and the extracts were purified using multiwalled carbon nanotubes. The method was validated using pitaya samples spiked at 0.5, 5, and 50 µg/kg, and the average recoveries varied from 61.1 to 103.7% with relative standard deviations lower than 12.7% (= 5). This method exhibited sufficient linearity within the concentration range of 0.1–100 µg/L. The limits of detection and quantification were in the ranges of 0.001–0.1 and 0.003–0.3 µg/kg, respectively. The method was successfully applied to analyze pitaya samples in Nanning, and no indaziflam or its metabolites were detected in the samples analyzed.  相似文献   

16.
Ginkgolide B is a dietary diterpene with multiple pharmacological activities. However, current research on ginkgolide B is not comprehensive. The current study analyzed the metabolic profile of ginkgolide B in vivo and in vitro using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. To detect and identify the different metabolites in ginkgolide B, a novel data processing method was used as an assistant tool. A total of 53 different metabolites of ginkgolide B (38 phase I metabolites and 15 phase II metabolites) were detected relative to blank samples. The biotransformation route of ginkgolide B was identified as oxidation, dehydroxylation, hydrogenation, decarbonylation, demethylation, sulfate conjugation, glucose conjugation, methylation, and acetylation. The current study demonstrated a method for rapidly detecting and identifying metabolites and provided useful information to further characterize the pharmacology and mechanism of ginkgolide B. A method for the analysis of other diterpene metabolic components in vivo and in vitro was also established.  相似文献   

17.
In this paper, mesterolone metabolic profiles were investigated carefully. Mesterolone was administered to one healthy male volunteer. Urinary extracts were analyzed by liquid chromatography quadruple time‐of‐flight mass spectrometry (LC‐QTOFMS) for the first time. Liquid–liquid extraction was applied to processing urine samples, and dilute‐shoot analyses of intact metabolites were also presented. In LC‐QTOFMS analysis, chromatographic peaks for potential metabolites were hunt down by using the theoretical [M–H]? as target ions in full scan experiment, and their actual deprotonated ions were analyzed in targeted MS/MS mode. Ten metabolites including seven new sulfate and three glucuronide conjugates were found for mesterolone. Because of no useful fragment ion for structural elucidation, gas chromatography–mass spectrometry instrumentation was employed to obtain structural details of the trimethylsilylated phase I metabolite released after solvolysis. Thus, their potential structures were proposed particularly by a combined MS approach. All the metabolites were also evaluated in terms of how long they could be detected, and S1 (1α‐methyl‐5α‐androst‐3‐one‐17β‐sulfate) together with S2 (1α‐methyl‐5α‐androst‐17‐one‐3β‐sulfate) was detected up to 9 days after oral administration, which could be the new potential biomarkers for mesterolone misuse. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Belamcanda chinensis has been extensively used as antibechic, expectorant and anti‐inflammatory agent in traditional medicine. Irisflorentin is one of the major active ingredients. However, little is known about the metabolism of irisflorentin so far. In this work, rat liver microsomes (RLMs) were used to investigate the metabolism of this compound for the first time. Seven metabolites were detected. Five of them were identified as 6,7‐dihydroxy‐5,3′,4′,5′‐tetramethoxy isoflavone (M1), irigenin (M2), 5,7,4′‐trihydroxy‐6,3′,5′‐trimethoxy isoflavone (M3), 6,7,4′‐trihydroxy‐5,3′,5′‐trimethoxy isoflavone (M4) and 6,7,5′‐trihydroxy‐5,3′,4′‐trimethoxy isoflavone (M5) by means of NMR and/or HPLC‐ESI‐MS. The structures of M6 and M7 were not elucidated because they produced no MS signals. The predominant metabolite M1 was noted to be a new compound. Interestingly, it was found to possess anticancer activity much higher than the parent compound. The enzymatic kinetic parameters of M1 revealed a sigmoidal profile, with Vmax = 12.02 μm /mg protein/min, Km = 37.24 μm , CLint = 0.32 μL/mg protein/min and h = 1.48, indicating the positive cooperation. For the first time in this work, a new metabolite of irisflorentin was found to demonstrate a much higher biological activity than its parent compound, suggesting a new avenue for the development of drugs from B. chinensis, which was also applicable for other herbal plants. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A method was developed for the quantitative analysis of the novel anticancer agent ES-285 (spisulosine; free base) in human, mouse, rat, and dog plasma using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry in order to support pre-clinical and clinical studies with the drug. Sample preparation was carried out by protein precipitation with acetonitrile, containing isotopically labeled (d(3)) ES-285 as internal standard. Aliquots of 10 micro l of the supernatant were injected directly on to an Inertsil ODS-3 column (50 x 2.0 mm i.d., 5 micro m). Elution was carried out using methanol-10 mM ammonium formate (pH 4) in water (80 : 20, v/v) pumped at a flow-rate of 0.2 ml min(-1) with a run time of 8 min. Multiple reaction monitoring chromatograms obtained on an API365 triple-quadrupole mass spectrometer were used for quantification. The lower limit of quantitation (LLOQ) was 10 ng ml(-1) in human, mouse, rat, and dog plasma and the linear dynamic range extended to 500 ng ml(-1). A full validation of the method was performed in human plasma, and partial validations were performed in mouse, rat and dog plasma. Accuracies and precisions were <20% at the LLOQ concentration and <15% for all other concentrations in all matrices. ES-285 was stable during all steps of the assay. Thus far this method has been used successfully to analyze over 500 samples in pre-clinical trials, and will be implemented in the planned clinical phase I studies.  相似文献   

20.
Black tea consumption has been associated with many health benefits including the prevention of cancer and heart disease. Theaflavins are the major bioactive polyphenols present in black tea. Unfortunately, limited information is available on their biotransformation. In the present study, we investigated the metabolic fate of theaflavin 3,3'-digallate (TFDG), one of the most abundant and bioactive theaflavins, in mouse fecal samples using liquid chromatography/electrospray ionization tandem mass spectrometry by analyzing the MS(n) (n=1-3) spectra. Four metabolites theaflavin, theaflavin 3-gallate, theaflavin 3'-gallate, and gallic acid were identified as the major mouse fecal metabolites of TFDG. Glucuronidated and sulfated, instead of methylated metabolites of theaflavin 3-gallate, theaflavin 3'-gallate, and TFDG were detected and identified as the minor mouse fecal metabolites of TFDG. Our results indicate that TFDG can be degraded in mice. Further studies on the formation of those metabolites in TFDG-treated mice in germ-free conditions are warranted. To our knowledge, this is the first report on the biotransformation of TFDG in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号