首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition of the G protein‐coupled receptor, relaxin family peptide receptor 1 (RXFP1), by a small LDLa protein may be a potential approach for prostate cancer treatment. However, it is a significant challenge to chemically produce the 41‐residue and three‐disulfide cross‐bridged LDLa module which is highly prone to aspartimide formation due to the presence of several aspartic acid residues. Known palliative measures, including addition of HOBt to piperidine for Nα‐deprotection, failed to completely overcome this side reaction. For this reason, an elegant native chemical ligation approach was employed in which two segments were assembled for generating the linear LDLa protein. Acquisition of correct folding was achieved by using either a regioselective disulfide bond formation or global oxidation strategies. The final synthetic LDLa protein obtained was characterized by NMR spectroscopic structural analysis after chelation with a Ca2+ ion and confirmed to be equivalent to the same protein obtained by recombinant DNA production.  相似文献   

2.
Phospholipid vesicles are of intense fundamental and practical interest, yet methods for their de novo generation from reactive precursors are limited. A non‐enzymatic and chemoselective method to spontaneously generate phospholipid membranes from water‐soluble starting materials would be a powerful tool for generating vesicles and studying lipid membranes. Here we describe the use of native chemical ligation (NCL) to rapidly prepare phospholipids spontaneously from thioesters. While NCL is one of the most popular tools for synthesizing proteins and nucleic acids, to our knowledge this is the first example of using NCL to generate phospholipids de novo. The lipids are capable of in situ synthesis and self‐assembly into vesicles that can grow to several microns in diameter. The selectivity of the NCL reaction makes in situ membrane formation compatible with biological materials such as proteins. This work expands the application of NCL to the formation of phospholipid membranes.  相似文献   

3.
4.
The folding of disulfide proteins is of considerable interest because knowledge of this may influence our present understanding of protein folding. However, sometimes even the disulfide pattern cannot be unequivocally determined by the available experimental techniques. For example, the structures of a few small antifungal proteins (PAF, AFP) have been disclosed recently using NMR spectroscopy but with some ambiguity in the actual disulfide pattern. For this reason, we carried out the chemical synthesis of PAF. Probing different approaches, the oxidative folding of the synthetic linear PAF yielded a folded protein that has identical structure and antifungal activity as the native PAF. In contrast, unfolded linear PAF was inactive, a result that may have implications concerning its redox state in the mode of action.  相似文献   

5.
C‐Terminal peptide thioesters are shown to react efficiently with peptide fragments containing an N‐terminal selenocysteine to give selenoproteins. In analogy to the native chemical ligation of thioesters and peptides containing N‐terminal cysteines, the selenol presumably attacks the thioester nucleophilically to give a selenoester intermediate that subsequently rearranges to give a native chemical bond. The utility of this procedure was demonstrated by the synthesis of a selenium‐containing derivative of bovine pancreatic trypsin inhibitor (BPTI) in which Cys38 is replaced by selenocysteine. The artificial selenoprotein folds into a conformation similar to that of wild‐type BPTI and inhibits trypsin and chymotrypsin with unaltered affinity.  相似文献   

6.
The preparation of native S-palmitoylated (S-palm) membrane proteins is one of the unsolved challenges in chemical protein synthesis. Herein, we report the first chemical synthesis of S-palm membrane proteins by removable-backbone-modification-assisted Ser/Thr ligation (RBMGABA-assisted STL). This method involves two critical steps: 1) synthesis of S-palm peptides by a new γ-aminobutyric acid based RBM (RBMGABA) strategy, and 2) ligation of the S-palm RBM-modified peptides to give the desired S-palm product by the STL method. The utility of the RBMGABA-assisted STL method was demonstrated by the synthesis of rabbit S-palm sarcolipin (SLN) and S-palm matrix-2 (M2) ion channel. The synthesis of S-palm membrane proteins highlights the importance of developing non-NCL methods for chemical protein synthesis.  相似文献   

7.
脯氨酸硫酯自然化学连接反应中的轨道相互作用   总被引:1,自引:0,他引:1  
张琪  于海珠  石景 《物理化学学报》2013,29(11):2321-2331
采用密度泛函理论(DFT)方法(M06//B3LYP)对脯氨酸硫酯在自然化学连接(NCL)反应中低反应活性的现象进行了详细的理论研究.通过对脯氨酸和丙氨酸硫酯NCL反应的具体反应路径(Path-Pro和Path-Ala)分别进行计算发现,两个分子的反应路径均先后经历外源硫醇-硫酯交换、硫酯-硫酯交换、分子内S→N酰基化重排三个主要步骤.两者的决速步骤均为第一步骤.其中Path-Pro的总能垒较高,即脯氨酸硫酯的反应活性较低,这与实验结果一致.对两路径的决速步骤进一步考察,发现脯氨酸中αN上的羰基对反应中心羰基的n→π*相互作用使得脯氨酸硫酯的LUMO轨道能量升高,相应羰基C与S(芳基硫醇)原子之间的相互作用较小,从而使得反应能垒升高.  相似文献   

8.
The chemical ligation of two unprotected peptides to generate a natural peptidic linkage specifically at the C‐ and N‐termini is a desirable goal in chemical protein synthesis but is challenging because it demands high reactivity and selectivity (chemo‐, regio‐, and stereoselectivity). We report an operationally simple and highly effective chemical peptide ligation involving the ligation of peptides with C‐terminal salicylaldehyde esters to peptides with N‐terminal cysteine/penicillamine. The notable features of this method include its tolerance of steric hinderance from the side groups on either ligating terminus, thereby allowing flexible disconnection at sites that are otherwise difficult to functionalize. In addition, this method can be expanded to selective desulfurization and one‐pot ligation‐desulfurization reactions. The effectiveness of this method was demonstrated by the synthesis of VISTA (216‐311), PD‐1 (192‐288) and Eglin C.  相似文献   

9.
The acetamidomethyl (Acm) moiety is a widely used cysteine protecting group for the chemical synthesis and semisynthesis of peptide and proteins. However, its removal is not straightforward and requires harsh reaction conditions and additional purification steps before and after the removal step, which extends the synthetic process and reduces the overall yield. To overcome these shortcomings, a method for rapid and efficient Acm removal using PdII complexes in aqueous medium is reported. We show, for the first time, the assembly of three peptide fragments in a one‐pot fashion by native chemical ligation where the Acm moiety was used to protect the N‐terminal Cys of the middle fragment. Importantly, an efficient synthesis of the ubiquitin‐like protein UBL‐5, which contains two native Cys residues, was accomplished through the one‐pot operation of three key steps, namely ligation, desulfurization, and Acm deprotection, highlighting the great utility of the new approach in protein synthesis.  相似文献   

10.
11.
The method of native chemical ligation between an unprotected peptide α‐thioester and an N‐terminal cysteine–peptide to give a native peptide in aqueous solution is one of the most effective peptide ligation methods. In this work, a systematic theoretical study was carried out to fully understand the detailed mechanism of ligation. It was found that for the conventional native chemical ligation reaction between a peptide thioalkyl ester and a cysteine in combination with an added aryl thiol as catalyst, both the thiol‐thioester exchange step and the transthioesterification step proceed by an anionic concerted SN2 displacement mechanism, whereas the intramolecular rearrangement proceeds by an addition–elimination mechanism, and the rate‐limiting step is the thiol‐thioester exchange step. The theoretical method was then extended to study the detailed mechanism of the auxiliary‐mediated peptide ligation between a peptide thiophenyl ester and an N‐2‐mercaptobenzyl peptide in which both the thiol‐thioester exchange step and intramolecular acyl‐transfer step proceed by a concerted SN2‐type displacement mechanism. The energy barrier of the thiol‐thioester exchange step depends on the side‐chain steric hindrance of the C‐terminal amino acid, whereas that of the acyl‐transfer step depends on the side‐chain steric hindrance of the N‐terminal amino acid.  相似文献   

12.
To expand the scope of native chemical ligation (NCL) beyond reactions at cysteine, ligation auxiliaries are appended to the peptide N-terminus. After the introduction of a pyridine-containing auxiliary, which provided access to challenging junctions (proline or β-branched amino acids), we herein probe the role of the pyridine-ring nitrogen. We observed side reactions leading to preliminary auxiliary loss. We describe a new easy to attach β-mercapto-β-(4-methoxy-2-pyridinyl)-ethyl (MMPyE) auxiliary, which 1) has increased stability; 2) enables NCL at sterically encumbered junctions (e. g., Leu-Val); and 3) allows removal under mildly basic (pH 8.5) conditions was introduced. The synthesis of a 120 aa long peptide containing eight MUC5AC tandem repeats via ligation of two 60mers demonstrates the usefulness. Making use of hitherto unexplored NCL to tyrosine, the MMPyE auxiliary provided access to a head-to-tail-cyclized 21-mer peptide and a His6-tagged hexaphosphorylated peptide comprising 6 heptapeptide repeats of the RNA polymerase II C-terminal domain.  相似文献   

13.
14.
Facile synthesis of C‐terminal thioesters is integral to native chemical ligation (NCL) strategies for chemical protein synthesis. We introduce a new method of mild peptide activation, which leverages solid‐phase peptide synthesis (SPPS) on an established resin linker and classical heterocyclic chemistry to convert C‐terminal peptide hydrazides into their corresponding thioesters via an acyl pyrazole intermediate. Peptide hydrazides, synthesized on established trityl chloride resins, can be activated in solution with stoichiometric acetyl acetone (acac), readily proceed to the peptide acyl pyrazoles. Acyl pyrazoles are mild acylating agents and are efficiently exchanged with an aryl thiol, which can then be directly utilized in NCL. The mild, chemoselective, and stoichiometric activating conditions allow this method to be utilized through multiple sequential ligations without intermediate purification steps.  相似文献   

15.
Native chemical ligation enables the chemical synthesis of proteins. Previously, thiol‐containing auxiliary groups have been used to extend the reaction scope beyond N‐terminal cysteine residues. However, the N‐benzyl‐type auxiliaries used so far result in rather low reaction rates. Herein, a new Nα‐auxiliary is presented. Consideration of a radical fragmentation for cleavage led to the design of a new auxiliary group which is selectively removed under mildly basic conditions (pH 8.5) in the presence of TCEP and morpholine. Most importantly and in contrast to previously described auxiliaries, the 2‐mercapto‐2‐phenethyl auxiliary is not limited to Gly‐containing sites and ligations succeed at sterically demanding junctions. The auxiliary is introduced in high yield by on‐resin reductive amination with commercially available amino acid building blocks. The synthetic utility of the method is demonstrated by the synthesis of two antimicrobial proteins, DCD‐1L and opistoporin‐2.  相似文献   

16.
Research aimed at understanding the specific role of glycosylation patterns in protein function would greatly benefit from additional approaches allowing direct access to homogeneous glycoproteins. Herein the development and application of an efficient approach for the synthesis of complex homogenously glycosylated peptides based on a multifunctional photocleavable auxiliary is described. The presence of a PEG polymer within the auxiliary enables sequential enzymatic glycosylation and straightforward isolation in excellent yields. The auxiliary‐modified peptides can be directly used in native chemical ligations with peptide thioesters easily obtained by direct hydrazinolysis of the respective glycosylated peptidyl resins and subsequent oxidation. The ligated glycopeptides can be smoothly deprotected by UV irradiation. We apply this approach to the preparation of variants of the epithelial tumor marker MUC1 carrying one or more Tn, T, or sialyl‐T antigens.  相似文献   

17.
18.
The native chemical ligation reaction of peptide thioesters with cysteinyl peptides is a pivotal chemical process in the production of native or modified peptides and proteins, and well beyond in the preparation of various biomolecule analogs and materials. To benefit from this reaction at its fullest and to access all the possible applications, the experimentalist needs to know the factors affecting its rate and how to control it. This concept article presents the fundamental principles underlying the rate of the native chemical ligation and its homogeneous catalysis by nucleophiles. It has been prepared to serve as a quick guide in the search for an appropriate catalyst.  相似文献   

19.
Self‐assembled peptides were synthesized by using a native chemical ligation (NCL)/desulfurization strategy that maintained the chemical diversity of the self‐assembled peptides. Herein, we employed oxo‐ester‐mediated NCL reactions to incorporate cysteine, a cysteine‐based dipeptide, and a sterically hindered unnatural amino acid (penicillamine) into peptides. Self‐assembly of the peptides resulted in the formation of self‐supporting gels. Microscopy analysis indicated the formation of helical nanofibers, which were responsible for the formation of gel matrices. The self‐assembly of the ligated peptides was governed by covalent and non‐covalent interactions, as confirmed by FTIR, CD, fluorescence spectroscopy, and MS (ESI) analyses. Peptide disassembly was induced by desulfurization reactions with tris(2‐carboxyethyl)phosphine (TCEP) and glutathione at 80 °C. Desulfurization reactions of the ligated peptides converted the Cys and penicillamine functionalities into Ala and Val moieties, respectively. The self‐supporting gels showed significant shear‐thinning and thixotropic properties.  相似文献   

20.
N‐Sulfanylethylanilide (SEAlide) peptides were developed with the aim of achieving facile synthesis of peptide thioesters by 9‐fluorenylmethyloxycarbonyl (Fmoc)‐based solid‐phase peptide synthesis (Fmoc SPPS). Initially, SEAlide peptides were found to be converted to the corresponding peptide thioesters under acidic conditions. However, the SEAlide moiety was proved to function as a thioester in the presence of phosphate salts and to participate in native chemical ligation (NCL) with N‐terminal cysteinyl peptides, and this has served as a powerful protein synthesis methodology. The reactivity of a SEAlide peptide (anilide vs. thioester) can be easily tuned with or without the use of phosphate salts. This interesting property of SEAlide peptides allows sequential three‐fragment or unprecedented four‐fragment ligation for efficient one‐pot peptide/protein synthesis. Furthermore, dual‐kinetically controlled ligation, which enables three peptide fragments simultaneously present in the reaction to be ligated in the correct order, was first achieved using a SEAlide peptide. Beyond our initial expectations, SEAlide peptides have served in protein chemistry fields as very useful crypto‐peptide thioesters. DOI 10.1002/tcr.201200007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号