首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A new cetyl‐alcohol‐reinforced hollow fiber solid/liquid‐phase microextraction (CA–HF–SLPME) followed by high‐performance liquid chromatography–diode array detection (HPLC–DAD) method was developed for simultaneous determination of ezetimibe and simvastatin in human plasma and urine samples. To prepare the CA–HF–SLPME device, the cetyl‐alcohol was immobilized into the pores of a 2.5 cm hollow fiber micro‐tube and the lumen of the micro‐tube was filled with 1‐octanol with the two ends sealed. Afterwards, the prepared device was introduced into 10 mL of the sample solution containing the analytes with agitation. Under optimized conditions, calibration curves plotted in spiked plasma and urine samples were linear in the ranges of 0.363–25/0.49–25 μg L?1 for ezetimibe/simvastatin and 0.193–25/0.312–25 μg L?1 for ezetimibe/simvastatin in plasma and urine samples, respectively. The limit of detection was 0.109/0.174 μg L?1 for ezetimibe/simvastatin in plasma and 0.058/0.093 μg L?1 for ezetimibe/simvastatin in urine. As a potential application, the proposed method was applied to determine the concentration of selected analytes in patient plasma and urine samples after medication and satisfactory results were achieved. In comparison with reference methods, the CA–HF–SLPME–HPLC–DAD method demonstrates considerable potential in the biopharmaceutical analysis of selected drugs.  相似文献   

2.
This paper describes the application of thin-layer chromatography (TLC) combined with densitometry to simultaneous determination of levofloxacin hemihydrate (LEV) and ambroxol hydrochloride (AMB) in bulk and tablets. The separation was achieved on aluminum sheet of silica gel 60 F 254 using chloroform: methanol: toluene: ammonia (10: 6: 3: 0.8 v/v/v/v) as mobile phase. Quantification was carried out densitometrically at 245 nm. This system was found to give compact spots for LEV (R f value of 0.4) and AMB (R f value of 0.7). The calibration curves for LEV and AMB was found to be linear between 9960–16600 ng/spot (r 2 = 0.999) and 600–1000 ng/spot (r 2 = 0.999), respectively. The mean percentage recoveries from tablets for LEV and AMB were 99.45% and 99.58%, respectively. The TLC-densitometry method has many advantages, such as simplicity, reasonable sensitivity, rapidity, and low cost, and it can be successfully used in routine analysis of both these drugs in tablet formulations.  相似文献   

3.
In this paper two applications of three‐phase HF‐LPME for the determination of pharmaceuticals in human urine are proposed: a capillary electrophoresis with a photodiode array detection method for the analysis of seven nonsteroidal anti‐inflammatory drugs (NSAIDs) and a high‐performance liquid chromatographic with photo diode array and fluorescence detection method for the determination of four sulfonamides and their corresponding N4‐acetyl‐metabolites. Q3/2 Accurel® polypropylene hollow fibers were used for both procedures. Dihexyl ether was used as the supported liquid membrane for the determination of anti‐inflammatories and 1‐octanol for sulfonamides. An aqueous solution (pH 12) was used in both procedures as the acceptor phase and as the donor phase an aqueous solution (pH 2), and a 2 m Na2SO4 aqueous solution (pH 4) was used for the determination of the anti‐inflammatories and sulfonamides. The detection limits obtained were between 0.25 (naproxen) and 0.86 ng/mL (aceclofenac) for the determination of anti‐inflammatories and 7 × 10?4 (sulfamethoxazole) and 0.048 ng/mL (N4‐acetyl‐sulfamethazine) for sulfonamides. The method was successfully applied to the determination of the analytes in human urine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A novel generic reverse phase high performance liquid chromatography (RP‐HPLC) method is developed and validated for simultaneous determination of seven pharmaceutically active ingredients, namely, acetaminophen, dextromethorphan, doxylamine, phenylephrine, guaifenesin, caffeine and aspirin. All seven ingredients were quantified in soft gel, syrup and tablet formulations of the over‐the‐counter US‐marketed products, as per the guidelines of the International Conference on Harmonization. The separation was achieved in a 16 min run time on an Agilent Zorbax Phenyl column using a gradient method with two mobile phases. Mobile phase A was 0.15% trifluoro acetic acid in purified water and while mobile phase B was a mixture of acetonitrile and methanol (750:250 v/v) with 0.02% trifluoro acetic acid. The flow rate was 1.0 mL min?1 and injection volume was 10 μL. Detection was performed at 280 nm using a photodiode array detector. As part of the method validation, specificity, linearity, precision and recovery parameters were verified. The concentration and area relationships were linear (R2 > 0.999), over the concentration ranges 20–120 μg mL?1 for acetaminophen, 75–450 μg mL?1 for dextromethorphan, 31.25–187.5 μg mL?1 for doxylamine, 25–150 μg mL?1 for phenylephrine, 25–150 μg mL?1 for aspirin, 6.5–39 μg mL?1 for caffeine and 12–72 μg mL?1 for guaifenesin. The relative standard deviations for precision and intermediate precision were <1.5%. The proposed RP‐HPLC generic method is applicable for routine analysis of cold and cough over‐the‐counter products.  相似文献   

5.
A simple and rapid normal‐phase HPLC method for enantiospecific separation of a psychostimulant, adrafinil (ADL), and its metabolite modafinil (MDL) in rat serum and urine was developed. The separation was accomplished on a normal‐phase polysaccharide stationary phase Chiralcel OJ‐H using n‐hexane–ethanol (62:38 v/v) as a mobile phase at a flow rate of 1.0 mL/min. Detection was carried out at 225 nm using a photo diode array (PDA) detector. The elution order of the enantiomers was determined by a polarimeter connected in series with the PDA. ADL and its metabolite were recovered from rat serum and urine by solid phase extraction using Oasis HLB cartridges and the mean recoveries were ≥80%. The enantiomers were eluted within 15 min without any interference from endogenous substances. The calibration curves were linear (r2 > 0.998) in the concentration range of 1.20–500 µg/mL for ADL and MDL. The assay was specific, accurate, precise and reproducible (intra‐ and inter‐day precisions RSDs <7.2%). ADL in rat serum was stable over three freeze–thaw cycles at ambient temperature for 4 h. The method was successfully applied to pharmacokinetic studies of adrafinil after an oral administration to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A RP-LC method is presented, which is sensitive and selective for the simultaneous determination of enalapril–lercanidipine and enalapril–nitrendipine binary mixtures in their pharmaceutical dosage forms. The analyte peaks were detected using the LC method with the mobile phase ratio of methanol: water (70:30 v/v, pH 3.0) and a 1.0 mL min?1 flow rate. The detection wavelength was selected at 210 nm using photo diode array detector and column temperature was optimized to 30 °C. Linearity was obtained at different concentration ranges for all working pharmaceutically active compounds between 0.5 and 25 μg mL?1. The proposed methods were extensively validated according to USP 27 requirements and ICH guidelines. The methods were applied to the analysis of pharmaceutical dosage forms containing binary mixtures of enalapril–lercanidipine and enalapril–nitrendipine. Moreover, the proposed methods were applied for the degradation studies of the selected compounds. Degradation studies were conducted using stress conditions such as UV light, acidic and alkaline hydrolysis, oxidation and heat in oven, to evaluate the ability of the separation of the response of standard compounds from their degradation products.  相似文献   

7.
Paracetamol, caffeine and ibuprofen are found in over‐the‐counter pharmaceutical formulations. In this work, we propose two new methods for simultaneous determination of paracetamol, caffeine and ibuprofen in pharmaceutical formulations. One method is based on high‐performance liquid chromatography with diode‐array detection and the other on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation by high‐performance liquid chromatography with diode‐array detection was achieved on a C18 column (250×4.6 mm2, 5 μm) with a gradient mobile phase comprising 20–100% acetonitrile in 40 mmol L?1 phosphate buffer pH 7.0. The separation by capillary electrophoresis with capacitively coupled contactless conductivity detection was achieved on a fused‐silica capillary (40 cm length, 50 μm i.d.) using 10 mmol L?1 3,4‐dimethoxycinnamate and 10 mmol L?1 β‐alanine with pH adjustment to 10.4 with lithium hydroxide as background electrolyte. The determination of all three pharmaceuticals was carried out in 9.6 min by liquid chromatography and in 2.2 min by capillary electrophoresis. Detection limits for caffeine, paracetamol and ibuprofen were 4.4, 0.7, and 3.4 μmol L?1 by liquid chromatography and 39, 32, and 49 μmol L?1 by capillary electrophoresis, respectively. Recovery values for spiked samples were between 92–107% for both proposed methods.  相似文献   

8.
A new highly sensitive and selective electrochemical levofloxacin sensor based on co‐polymer‐carbon nanotube composite electrode was developed. Taurine and Glutathione were electrochemically co‐polymerized on multiwalled carbon nanotubes modified glassy carbon electrode (Poly(TAU‐GSH)/CNT/GCE) and used as a levofloxacin sensor in pH 6 phosphate buffer solution. The new composite electrode surfaces were characterized by scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy. Under the optimized conditions, two linear segments were obtained for increasing LEV concentrations between 20 nmol L?1‐1 μmol L?1 and 1.5 μmol L?1‐55 μmol L?1 LEV with a detection limit of 9 nmol L?1 using amperometry. Poly(TAU‐GSH)/CNT/GCE exhibited high sensitivity, selectivity with good stability. The new sensor was employed for real samples of LEV tablets and urine. Promising results were obtained with good accuracy which were also in accordance with LC‐MS/MS analysis.  相似文献   

9.
A simple, reliable, and rapid RP-LC method has been developed for the determination of some anticancer drugs (daunorubicin, doxorubicin and vincristine sulfate) in their dosage forms and human urine. These compounds are well separated on a C18 column using the mobile phase consisting of a mixture of acetonitrile (50:50; v/v) at a flow rate of 1.5 mL min?1. The analyte peaks were detected at 235 nm for doxorubicin and daunorubicin, and 220 nm for vincristine. Linearity was obtained in different concentration ranges between 0.10 and 12 μg mL?1 for all compounds. Good sensitivity for all analytes was observed with DAD detection. LOD and LOQ of the method were found satisfying. The proposed method has been extensively validated in accordance with ICH guidelines and obtained results proved that the proposed method was precise, accurate, selective, and sensitive for simultaneous analysis of studied compounds. All analytical procedures including sample preparation, flow rate, and run time were at low levels. Also, pK a values were determined using the dependence of the retention factor on the pH of the mobile phase. The effect of the mobile phase composition on the ionization constant was studied by measuring the pK a at different methanol–water mixtures, ranging between 45 and 60 % (v/v).  相似文献   

10.
This study describes the development and full validation of a stability-indicating HPLC method to quantify ritonavir (RTV) and lopinavir (LPV) in soft gelatin capsules. The method uses a LiChrospher® 100 RP-18 (250 mm × 4.6 mm, 5 µm, Merck) column and isocratic elution. The mobile phase consisted of a mixture of acetonitrile-water-methanol (53:37:10, v/v/v), pumped at a flow-rate of 1.0 mL min?1 and UV detection at 210 nm using a photodiode array detector. LPV and RTV were exposed to thermal, photolytic, hydrolytic and oxidative stress conditions, and the stressed samples were analyzed by the proposed method. The response was linear over a range of 40-360 µg mL?1 for LPV and 10–90 µg mL?1 for RTV (r > 0,999 for both drugs). The mean recoveries were 99.46 and 100.81% for LPV and RTV, respectively. The RSD values for intra- and inter-day precision studies were < 0.70% for both drugs. Degradation studies showed that lopinavir is stable in thermal, alkaline and oxidative conditions, while ritonavir degraded under these conditions. The method was found to be stability-indicating and can be used for the routine analysis of the association LPV/RTV in soft gelatin capsules.  相似文献   

11.
A rapid, selective and sensitive reversed-phase liquid chromatographic (LC) method was developed for the determination of piribedil in human serum, urine and pharmaceutical dosage form. LC analysis was carried out using reversed-phase isocratic elution with a C18 column and a mobile phase of 0.01 M phosphate buffer-acetonitrile (50:50, v/v). The chromatograms showed good resolution and sensitivity with no interference of human serum and urine. Piribedil concentrations were determined using diode array detection at 240 nm. Sildenafil citrate was used as internal standard. The limit of quantification (LOQ) and limit of detection (LOD) concentrations were 107.2 and 321.6 pg mL?1, 96.6 and 290.4 pg mL?1, 161.7 and 53.9 pg mL?1 for urine, serum and pharmaceutical dosage forms, respectively. The method was validated for its linearity, precision and accuracy and applied to the tablets, urine and human serum. In addition, the results were compared to those obtained from UV-spectrophotometry.  相似文献   

12.
A heart-cut two-dimensional high-performance liquid chromatography method for enantiomeric determination of salbutamol, salmeterol and atenolol in urine is presented. It involves the use of two separations in a liquid chromatography?Cliquid chromatography achiral?Cchiral coupling. Target compounds were previously separated in a primary column (Kinetex? HILIC, 2.6???m, 150?×?2.1?mm I.D.) with a mixture of MeOH:ACN:ammonium acetate buffer (5?mM, pH 6) 90:5:5 (v/v/v) as mobile phase at a flow rate of 0.40?mL?min?1. Enantiomeric separation was carried out by transferring peak of each compound through a switching valve to a vancomycin chiral column (Chirobiotic? V, 2.6???m, 150?×?2.1?mm I.D.) using MeOH:ammonium acetate buffer (2?mM, pH 4) 97:3 (v/v) as mobile phase at a flow rate of 0.50?mL?min?1. Ultraviolet detection was done at 227?nm. The method was applied to determine target analytes in urine samples after enzymatic hydrolysis with ??-glucuronidase from Helix pomatia, followed by a solid-phase extraction procedure using Isolute? HCX mixed-mode cartridges. Extraction recoveries ranged from 82 to 90?% in urine samples. Detection limits were 0.091?C0.095???g for each enantiomer of atenolol and between 0.058 and 0.076 and 0.18?C0.14???g for enantiomers of salbutamol and salmeterol, respectively (3?mL of urine). Linearity ranges were between 0.5 and 10???g?mL?1. Intraday and interday reproducibilities of enantiomeric ratio and enantiomeric fraction, expressed as relative standard deviation, were between 1.9 and 9.0?%. The optimized method was successfully applied to the analysis of urine samples obtained from excretion studies in volunteers and in freeze-dried urine samples, containing urinary components with MW?<?10,000 and components with MW?>?10,000, spiked with different amounts of studied drugs.  相似文献   

13.
(RS)‐Etodolac was isolated from commercial tablets and was purified and characterized to be used as racemic standard. A pair of diastereomeric derivatives was synthesized using (S)‐levofloxacin as a chiral derivatizing reagent. The derivatization reaction was carried out under conditions of stirring at room temperature (30°C for 1.5 h) as well as under microwave irradiation; the derivatives obtained by the two methods were compared. Reaction conditions for derivatization were optimized with respect to mole ratio of chiral derivatizing reagent and (RS)‐etodolac. No racemization was observed throughout the study. Separation of diastereomeric derivatives was successful using C18 column and a binary mixture of methanol and triethyl ammonium phosphate buffer of pH 4.5 (80:20, v/v) as mobile phase at a flow rate of 1 mL min?1 and UV detection at 223 nm. An efficient approach for recognizing chirality and determining the absolute configuration of the diastereomeric derivatives of (RS)‐etodolac is described, which in turn is a measure of the enantiomeric purity of (RS)‐etodolac since the diastereomeric derivatives were separated and isolated using preparative thin‐layer chromatography.  相似文献   

14.
Separation of racemic mixture of (RS)‐bupropion, (RS)‐baclofen and (RS)‐etodolac, commonly marketed racemic drugs, has been achieved by modifying the conventional ligand exchange approach. The Cu(II) complexes were first prepared with a few l ‐amino acids, namely, l ‐proline, l ‐histidine, l ‐phenylalanine and l ‐tryptophan, and to these was introduced a mixture of the enantiomer pair of (RS)‐bupropion, or (RS)‐baclofen or (RS)‐etodolac. As a result, formation of a pair of diastereomeric complexes occurred by ‘chiral ligand exchange’ via the competition between the chelating l ‐amino acid and each of the two enantiomers from a given pair. The diastereomeric mixture formed in the pre‐column process was loaded onto HPLC column. Thus, both the phases during chromatographic separation process were achiral (i.e. neither the stationary phase had any chiral structural feature of its own nor did the mobile phase have any chiral additive). Separation of diastereomers was successful using a C18 column and a binary mixture of MeCN and TEAP buffer of pH 4.0 (60:40, v/v) as mobile phase at a flow rate of 1 mL/min and UV detection at 230 nm for (RS)‐Bup, 220 nm for (RS)‐Bac and 223 nm for (RS)‐Etd. Baseline separation of the two enantiomers was obtained with a resolution of 6.63 in <15 min. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Accurate and reproducible HPLC methods were developed and validated for the determination of concentrations of luteolin (LT) and tetra‐acetyl‐luteolin (TALT) in rat plasma. HPLC analyses were performed on an Agilent TC‐C18 column protected by a guard Agilent Zorbax Eclipse Plus. The mobile phase for LT was a binary mixture of acetonitrile–water (40:60, v/v) containing 0.5% phosphoric acid at a flow rate of 1.0 mL/min, and that for TALT was a binary mixture of methanol–water (70 : 30, v/v) containing 0.5% glacial acetic acid at the same flow rate. The UV detection wavelength for both analytes was set at 350 nm. The calibration curve was linear over the range of 40–1800 ng/mL, the lower limit of quantitation was 40 ng/mL and the lower limit of detection was 20 ng/mL for both LT and TALT. The intra‐ and inter‐day precision (RSD) values for all samples were within 7.9%. The concentration–time curves of LT and TALT after oral administration (30 mg/kg) were both fitted to a two‐compartment model. The pharmacokinetic characteristics of TALT were better than that of LT in the maximum plasma concentration (Cmax) and the area under the concentration–time curve (AUC). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A method is described for extraction and quantification of celecoxib in tablets. The extraction was achieved through centrifugation of the fine powder of the tablets in Acetonitrile (ACN). The extract was examined by LC. The chromatographic separation was carried out on a Caltrex AIII column, a relatively new packing material consisting of silica-bonded calix[8]arene, using isocratic binary mobile phase of ACN and H2O (55%:45%, v/v). A diode array detector was used at 254 nm for detection. The method was validated for system suitability, linearity, precision, limits of detection and quantitation, specificity, stability and robustness. The limits of detection and quantitation were 0.122 and 0.488 μg mL?1, respectively. The recovery value of this method was 101.88% and the reproducibility was within 2.08.  相似文献   

17.
The aim of the present study was to optimize a microemulsion liquid chromatography method for the simultaneous determination of norfloxacin and tinidazole binary mixture using a chemometric protocol. Optimization experiments were conducted through a process of screening and optimization. A 27‐4 fractional factorial design was used as screening design. While the location of optimum conditions was established by applying Derringer's desirability function. The optimal mobile phase composition was predicted to be: 3.5% w/v SDS, 10.03% v/v 1‐propanol, 0.5% v/v 1‐octanol, and 0.3% triethylamine in 0.02 M phosphoric acid at pH 6.5. The mobile phase was delivered isocratically at a flow rate of 1 mL/min with UV detection at 290 nm. Tinidazole and norfloxacin were eluted with retention times of 1.8 and 5.8 min, respectively. The calibration plots displayed good linear relationships in the concentration ranges of 0.5–50 and 0.75–75 μg/mL for norfloxacin and tinidazole, respectively. The method was successfully applied for determination of both drugs in pharmaceutical dosage forms and real human plasma. Where the accuracy was proved by the low values of % error and high values of recovery, also the relative standard deviation for the results did not exceed 1.5%, proving the precision of the method.  相似文献   

18.
A robust, specific and fully validated LC‐MS/MS method as per general practices of industry has been developed for estimation of lacidipine (LAC) with 100 μL of human plasma using lacidipine‐13C8 as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode. A simple liquid–liquid extraction process was used to extract LAC and IS from human plasma. The total run time was 3.0 min and the elution of LAC and IS occurred at 1.96 and 1.97 min; this was achieved with a mobile phase consisting of 5 mm ammonium acetate buffer–acetontrile (15:85 v/v) at a flow rate of 0.60 mL/min on a Zorbax SB C18 (50 × 4.6 mm, 5 µm) column. A linear response function was established for the range of concentrations 50–15,000 pg/mL (r > 0.998) for LAC. The current developed method has negligible matrix effect and is free from unwanted adducts and clusters which are formed owing to system such as solvent or mobile phase. The developed assay method was applied to an oral pharmacokinetic study in humans and successfully characterized the pharmacokinetic data up to 72 h. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A simple, rapid, and sensitive method based on dispersive liquid–liquid microextraction combined with HPLC‐UV detection applied for the quantification of chlordiazepoxide in some real samples. The effect of different extraction conditions on the extraction efficiency of the chlordiazepoxide drug was investigated and optimized using central composite design as a conventional efficient tool. Optimum extraction condition values of variables were set as 210 μL chloroform, 1.8 mL methanol, 1.0 min extraction time, 5.0 min centrifugation at 5000 rpm min?1, neutral pH, 7.0% w/v NaCl. The separation was reached in less than 8.0 min using a C18 column using isocratic binary mobile phase (acetonitrile/water (60:40, v/v)) with flow rate of 1.0 mL min?1. The linear response (r2 > 0.998) was achieved in the range of 0.005–10 μg mL?1 with detection limit 0.0005 μg mL?1. The applicability of this method for simultaneous extraction and determination of chlordiazepoxide in four different matrices (water, urine, plasma, and chlordiazepoxide tablet) were investigated using standard addition method. Average recoveries at two spiking levels were over the range of 91.3–102.5% with RSD < 5.0% (n = 3). The obtained results show that dispersive liquid–liquid microextraction combined with HPLC‐UV is a fast and simple method for the determination of chlordiazepoxide in real samples.  相似文献   

20.
A simple, fast and precise reversed phase liquid chromatographic method was developed for the simultaneous determination of artesunate (AS) and amodiaquine (AD) in combined pharmaceutical dosage form. Chromatographic separation of the two drugs was performed on a BDS Hypersil C18, 100 mm × 4.6 mm, 3 μm particle size column as stationary phase with a mobile phase comprising of phosphate buffer (pH 3.0 with orthophosphoric acid) and acetonitrile in the proportion of 50:40 (v/v), at a flow rate of 0.8 mL min?1 and UV detection at wavelength 210 nm for AS and 300 nm for AD using photo diode array detection. The proposed method was validated for specificity, accuracy, linearity, range, precision and was successfully applied to the simultaneous determination of AS and AD in the combined fixed dosage form without any excipient’s interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号