首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, specific, sensitive and rapid LC‐ESI‐MS/MS method has been developed and validated for the quantification of 4‐methylpyrazole in dog plasma using N‐methylnicotinamide‐d4 as an internal standard (IS) as per regulatory guidelines. Sample preparation was accomplished through a simple protein precipitation. Chromatographic separation of 4‐methylpyrazole and the IS was performed on a monolithic (Chromolith RP18e) column using an isocratic mobile phase comprising 0.2% formic acid in water and acetonitrile (20:80, v/v) at a flow rate of 1.0 mL/min. Elution of 4‐methylpyrazole and the IS occurred at ~1.60 and 1.56 min, respectively. The total chromatographic run time was 3.2 min. A linear response function was established in the concentration range of 4.96–4955 ng/mL. The intra‐ and inter‐day accuracy and precision were in the ranges 1.81–12.9 and 3.80–11.1%, respectively. This novel method has been applied to a pharmacokinetic study in dogs.  相似文献   

2.
A liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the quantification of tunicamycin in rat plasma as per regulatory guideline. Chromatography of tunicamycin and the IS in the processed plasma samples was achieved on an X‐Terra phenyl column using a binary gradient (mobile phase A, acetonitrile and mobile phase B, 5 mm ammonium formate) elution at a flow rate of 0.6 ml/min. LC–MS/MS was operated under the multiple reaction monitoring mode using the electrospray ionization technique in positive ion mode and the transitions of m/z 817.18 → 596.10, 831.43 → 610.10, 845.29 → 624.10, 859.23 → 638.10 and 309.24 → 163.20 were used to quantitate homologs A–D and the IS, respectively. The total chromatographic run time was 4.5 min. The correlation coefficient (r2) was >0.99 for all homologs with accuracy 90.7–107.4% and precision 0.74–15.1%. The recovery of homologs was 78.6–90.2%. No carryover was observed and the matrix effect was minimal. Tunicamycin four homologs were found to be stable on the bench‐top for 6 h, for up to three freeze–thaw cycles, in the injector for 24 h and for 1 month at ?80 ° C. The applicability of the validated method has been demonstrated in a rat pharmacokinetic study.  相似文献   

3.
A rapid, simple, specific and sensitive LC‐MS/MS method has been developed and validated for the enantiomeric quantification of amlodipine (AML) isomers [R‐amlodipine (R‐AML) and S‐amlodipine (S‐AML)] with 200 μL of human plasma using R‐AML‐d4 and S‐AML‐d4 as corresponding internal standards as per regulatory guidelines. A simple liquid–liquid extraction process was used to extract these analytes from human plasma. The total run time was 3.5 min and the elution of R‐AML, S‐AML, R‐AML‐d4 and S‐AML‐d4 occurred at 1.62, 2.51, 1.63 and 2.53 min, respectively. This was achieved with a mobile phase consisting of 0.2% ammonia–acetonitrile (20:80, v/v) at a flow rate of 1 mL/min on a Chiralcel OJ RH column. A linear response function was established for the range of concentrations 0.1–10 ng/mL (r >0.998) for each enantiomer. The intra‐ and inter‐day precision values for both enantiomers met the acceptance criteria. Both enantiomers were stable in a set of stability studies, viz. bench‐top, auto‐sampler, freeze–thaw cycles and long‐term. The current assay was successfully applied to a pharmacokinetic study to quantitate AML enantiomers following oral administration of 10 mg AML tablet to humans. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive, selective and rapid LC–ESI–MS/MS method has been developed and validated for the quantification of copanlisib in mouse plasma using enasidenib as an internal standard (IS) as per regulatory guideline. Copanlisib and the IS were extracted from mouse plasma using ethyl acetate as an extraction solvent and chromatographed using an isocratic mobile phase (0.2% formic acid–acetonitrile; 25:75, v/v) on a HyPURITY C18 column. Copanlisib and the IS eluted at ~0.95 and 2.00 min, respectively. The MS/MS ion transitions monitored were m/z 481.1 → 360.1 and m/z 474.0 → 456.0 for copanlisib and the IS, respectively. The calibration range was 3.59–3588 ng/mL. The intra‐ and inter‐batch accuracy and precision (RE and RSD) across quality controls met the acceptance criteria. Stability studies showed that copanlisib was stable in mouse plasma for one month. This novel method has been applied to a pharmacokinetic study in mice.  相似文献   

5.
Hinokiflavone has drawn a lot of attention for its multiple biological activities. In this study, a sensitive and selective method for determination of hinokiflavone in rat plasma was developed for the first time, using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Amentoflavone was used as an internal standard. Separation was achieved on a Hypersil Gold C18 column with isocratic elution using methanol–water (65:35, v /v) as mobile phase at a flow rate of 0.3 mL/min. A triple quadrupole mass spectrometer operating in the negative electrospray mode with selected reaction monitoring was used to detect the transitions of m/z 537 → 284 for hinokiflavone and m/z 537 → 375 for IS. The LOQ was 0.9 ng/mL with a linear range of 0.9–1000 ng/mL. The intra‐ and inter‐day accuracy (RE%) ranged from −3.75 to 6.91% and from −9.20 to 2.51% and the intra‐ and inter‐day precision (RSD) was between 0.32–14.11 and 2.85–10.04%. The validated assay was successfully applied to a pharmacokinetic study of hinokiflavone in rats. The half‐life of drug elimination at the terminal phase was 6.10 ± 1.86 h, and the area under the plasma concentration‐time curve from time zero to the time of last measurable concentration and to infinity values obtained were 2394.42 ± 466.86 and 2541.93 ± 529.85 h ng/mL, respectively.  相似文献   

6.
A highly sensitive and specific LC‐ESI‐MS/MS method has been developed and validated for simultaneous quantification of felodipine (FDP) and metoprolol (MPL) in rat plasma (50 μL) using phenacetin as an internal standard (IS) as per the FDA guidelines. Liquid–liquid extraction method was used to extract the analytes and IS from rat plasma. The chromatographic resolution of FDP, MPL and IS was achieved with a mobile phase consisting of 0.2% formic acid in water–acetonitrile (25:75, v/v) with a time program flow gradient on a C18 column. The total chromatographic run time was 4.0 min and the elution of FDP, MPL and IS occurred at 1.05, 2.59 and 1.65 min, respectively. A linear response function was established for the range of concentrations 0.59–1148 and 0.53–991 ng/mL for FDP and MPL, respectively, in rat plasma. The intra‐ and inter‐day accuracy and precision values for FDP and MPL met the acceptance as per FDA guidelines. FDP and MPL were stable in battery of stability studies viz., bench‐top, auto‐sampler and freeze–thaw cycles. The validated assay was applied to a pharmacokinetic study in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A highly sensitive, rapid assay method has been developed and validated for the estimation of S‐citalopram (S‐CPM) in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of S‐CPM and phenacetin (internal standard, IS) from rat plasma with t‐butyl methyl ether. Chromatographic separation was operated with 0.2% formic acid:acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a Symmetry Shield RP18 column with a total run time of 3.0 min. The MS/MS ion transitions monitored were 325.26 → 109.10 for S‐CPM and 180.10 → 110.10 for IS. Method validation and pre‐clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.5 ng/mL and the linearity was observed from 0.5 to 5000 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.14–5.56 and 0.25–12.3%, respectively. This novel method has been applied to a pharmacokinetic study and to estimate brain‐to‐plasma ratio of S‐CPM in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
LC‐ ESI‐ MS/MS simultaneous bioanalytical method was developed to determine acitretin and its metabolite isoacitretin in human plasma using acitretin‐d3 used as the internal standard for both analytes. The compounds were extracted using protein precipitation coupled with liquid–liquid extraction with flash freezing technique. Negative mass transitions (m/z) of acitretin, isoacitretin and acitretin‐d3 were detected in multiple reactions monitoring (MRM) mode at 325.4 → 266.3, 325.2 → 266.1 and 328.3 → 266.3, respectively, with a turbo ion spray interface. The chromatographic separation was achieved on an Ascentis‐RP amide column (4.6 × 150 mm, 5 µm) with mobile phase delivered in isocratic mode. The method was validated over a concentration range of 1.025–753.217 ng/mL for acitretin and 0.394–289.234 ng/mL for isoacitretin with a limit of quantification of 1.025 and 0.394 ng/mL. The intra‐day and inter‐day precisions were below 8.1% for acitretin and below 13.8% for isoacitretin, while accuracy was within ±7.0 and ±10.6% respectively. For the first time, the best possible conditions for plasma stability of acitretin and isoacitretin are presented and discussed with application to clinical samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A novel chiral method was developed and validated to determine N‐acetyl‐glutamine (NAG) enantiomers by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Enantioseparation was achieved on a Chiralpak QD‐AX column (150 × 4.6 mm i.d., 5 μm) using methanol–water (50 mm ammonium formate, pH 4.3; 70:30, v/v) at a flow rate of 500 μL/min. The detection was operated with an electrospray ionization source interface in positive mode. The ion transition for NAG enantiomers was m/z 189.0 → 130.0. The retention time of N‐acetyl‐l ‐glutamine and N‐acetyl‐d ‐glutamine were 15.2 and 17.0 min, respectively. Calibration curves were linear over the range of 0.02–20 μg/mL with r > 0.99. The deviation of accuracy and the coefficient of variation of within‐run and between‐run precision were within 10% for both enantiomers, except for the lower limit of quantification (20 ng/mL), where they deviated <15%. The recovery was >88% and no obvious matrix effect was observed. This method was successfully applied to investigate the plasma protein binding of NAG enantiomers in rats. The results showed that the plasma protein binding of NAG enantiomers was stereoselective. The assay method also exhibited good application prospects for the clinical monitoring of free drugs in plasma.  相似文献   

11.
A robust, specific and fully validated LC‐MS/MS method as per general practices of industry has been developed for estimation of lacidipine (LAC) with 100 μL of human plasma using lacidipine‐13C8 as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode. A simple liquid–liquid extraction process was used to extract LAC and IS from human plasma. The total run time was 3.0 min and the elution of LAC and IS occurred at 1.96 and 1.97 min; this was achieved with a mobile phase consisting of 5 mm ammonium acetate buffer–acetontrile (15:85 v/v) at a flow rate of 0.60 mL/min on a Zorbax SB C18 (50 × 4.6 mm, 5 µm) column. A linear response function was established for the range of concentrations 50–15,000 pg/mL (r > 0.998) for LAC. The current developed method has negligible matrix effect and is free from unwanted adducts and clusters which are formed owing to system such as solvent or mobile phase. The developed assay method was applied to an oral pharmacokinetic study in humans and successfully characterized the pharmacokinetic data up to 72 h. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Pogostone is an important constituent of Pogostemon cablin (Blanco) Benth., and possesses various known bioactivities. A rapid, simple and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the analysis of pogostone in rat plasma using chrysophanol as internal standard (IS). The analytes were extracted with methanol and separated using a reversed‐phase YMC‐UltraHT Pro C18 column. Elution was achieved with a mobile phase consisting of methanol–water (75:25, v/v) for 5 min at a flow rate of 400 μL/min. The precursor/product transitions (m/z) under MS/MS detection with negative electrospray ionization (ESI) were 223.0 → 139.0 and 253.1 → 224.9 for pogostone and IS, respectively. The calibration curve was linear over the concentration range 0.05–160 µg/mL (r = 0.9996). The intra‐ and inter‐day accuracy and precision were within ±10%. The validated method was successfully applied to the preclinical pharmacokinetic investigation of pogostone in rats after intravenous (5, 10 and 20 mg/kg) and oral administration (5, 10 and 20 mg/kg). Finally, the oral absolute bioavailability of pogostone in rats was calculated to be 70.39, 78.18 and 83.99% for 5, 10 and 20 mg/kg, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This study aims to develop and validate a simple and sensitive liquid chromatography with tandem mass spectrometry (LC–MS/MS) method for investigating the pharmacokinetic characteristics of bavachalcone. Liquid–liquid extraction was used to prepare plasma sample. Chromatographic separation of bavachalcone and IS was achieved using a Venusil ASB C18 (2.1 × 50 mm, 5 μm) column with a mobile phase of methanol (A)–water (B) (70:30, v /v). The detection and quantification of analytes was performed in selected‐reaction monitoring mode using precursor → product ion combinations of m/z 323.1 → 203.2 for bavachalcone, and m/z 373.0 → 179.0 for IS. Linear calibration plots were achieved in the range of 1–1000 ng/mL for bavachalcone (r 2 > 0.99) in rat plasma. The recovery of bavachalcone ranged from 84.1 to 87.0%. The method was precise, accurate and reliable. It was fully validated and successfully applied to pharmacokinetic study of bavachalcone.  相似文献   

14.
A sensitive, specific and rapid LC‐ESI‐MS/MS method has been developed and validated for the quantification of epacadostat in mouse plasma using tolbutamide as an internal standard (IS) as per regulatory guidelines. Sample preparation was accomplished through a protein precipitation. Chromatographic separation was performed on an Atlantis dC18 column using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.90 mL/min. Elution of epacadostat and IS occurred at ~2.41 and 2.51 min, respectively. The total chromatographic run time was 3.2 min. A linear response function was established in the concentration range of 1.07–533 ng/mL. The intra‐ and inter‐day accuracy and precision were in the ranges of 1.81–12.9 and 3.80–11.1%, respectively. This novel method has been applied to a pharmacokinetic study in mice.  相似文献   

15.
A sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of piracetam in rat plasma was developed and validated over the concentration range of 0.1–20 µg/mL. After addition of oxiracetam as internal standard, a simplified protein precipitation with trichloroacetic acid (5%) was employed for the sample preparation. Chromatographic separation was performed by a Zorbax SB‐Aq column (150 × 2.1 mm, 3.5 µm). The mobile phase was acetonitrile–1% formic acid in water (10:90 v/v) delivered at a flow rate of 0.3 mL/min. The MS data acquisition was accomplished in multiple reaction monitoring mode with a positive electrospray ionization interface. The lower limit of quantification was 0.1 µg/mL. For inter‐day and intra‐day tests, the precision (RSD) for the entire validation was less than 9%, and the accuracy was within the 94.6–103.2% range. The developed method was successfully applied to pharmacokinetic studies of piracetam in rats following single oral administration dose of 50 mg/kg. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A highly sensitive, specific and rapid LC‐ESI‐MS/MS method has been developed and validated for simultaneous quantification of methotrexate (MTX) and tofacitinib (TFB) in rat plasma (50 μL) using phenacetin as an internal standard (IS), as per the US Food and Drug Administration guidelines. After a solid‐phase extraction procedure, the separation of the analytes and IS was performed on a Chromolith RP18e column using an isocratic mobile phase of 5 m m ammonium acetate (pH 5.0) and acetonitrile at a ratio of 25:75 (v/v) using flow‐gradient with a total run time of 3.5 min. The detection was performed in multiple reaction monitoring mode, using the transitions of m/z 455.2 → 308.3, m/z 313.2 → 149.2 and m/z 180.3 → 110.2 for MTX, TFB and IS, respectively. The calibration curves were linear over the range of 0.49–91.0 and 0.40–74.4 ng/mL for MTX and TFB, respectively. The intra‐ and interday accuracy and precision values for MTX and TFB were <15% at low quality control (QC), medium QC and high QC and <20% at lower limit of quantification. The validated assay was applied to derive the pharmacokinetic parameters for MTX and TFB post‐dosing of MTX and TFB orally and intravenously to rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A highly sensitive, specific and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) analytical method has been developed and validated for the determination of ospemifene in human plasma using ospemifene‐d4 as an internal standard. Solid‐phase extraction technique with Phenomenex Strata X‐33 μm polymeric sorbent cartridges (30 mg/1 mL) was used to extract the analytes from the plasma. The chromatographic separation was achieved on Agilent Eclipse XDB‐Phenyl, 4.6 × 75 mm, 3.5 μm column using the mobile phase composition of methanol and 20 mm ammonium formate buffer (90:10, v/v) at a flow rate of 0.9 mL/min. A detailed method validation was performed as per the US Food and Drug Administration guidelines and the calibration curve obtained was linear (r2 = 99) over the concentration range 5.02–3025 ng/mL. The API‐4500 MS/MS was operated under multiple reaction monitoring mode during the analysis. The proposed method was successfully applied to a pharmacokinetic study in healthy human volunteers after oral administration of an ospemifene 60 mg tablet under fed conditions.  相似文献   

18.
A rapid and highly sensitive assay method has been developed and validated for the estimation of galantamine (GLM) in rat plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of GLM and phenacetin (internal standard, IS) from rat plasma using acetonitrile. Chromatographic separation was achieved with 0.2% formic acid:acetonitrile (50:50, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 2.5 min. The MS/MS ion transitions monitored were 288.10 → 213.10 for GLM and 180.10 → 110.10 for IS. Method validation was performed as per United States Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.12 ng/mL and linearity was observed from 0.12 to 525 ng/mL. The intra‐ and inter‐day precision were in the ranges of 4.73–11.7 and 5.83–8.64%, respectively. This novel method has been applied to a pharmacokinetic study in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A simple, specific, and sensitive liquid chromatography–mass spectrometry (LC‐MS) method for determination of cyasterone in rat plasma was developed in our laboratory. Cucurbitacin B was used as an internal standard (IS). After protein precipitation with twofold volume of acetonitrile, the analyte and IS were separated on a Luna C18 column (100 × 4.6 mm, i.d., 3.0 µm; Phenomenex) by isocratic elution with acetonitrile–water (80:20, v/v) as the mobile phase at a flow rate of 0.4 mL/min. An electrospray ionization source was applied and operated in the positive ion mode; selected ion monitoring scan mode was used for quantification, and the target ions m/z 543.3 for cyasterone and m/z 581.3 for IS were chosen. Good linearity was observed in the concentration range of 0.40–400 ng/mL for cyasterone in rat plasma. Intra‐day and inter‐day precision were both <7.4%. This method was proved to be suitable for pharmacokinetic studies after oral (5.0 mg/kg) or intravenous (0.5 mg/kg) administration of cyasterone in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A simple and sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous determination of isoquercitrin, kaempferol‐3‐O‐rutinoside and tiliroside in rat plasma. Plasma samples were deproteinized with methanol and separated on a Hypersil Gold C18 column (2.1 × 50 mm, i.d., 3.0 μm) using gradient elution with the mobile phase of water and methanol at a flow rate of 0.4 mL/min. Mass spectrometric detection was performed with negative ion electrospray ionization in selected reaction monitoring mode. All analytes showed good linearity over their investigated concentration ranges (r2 > 0.99). The lower limit of quantification was 1.0 ng/mL for isoquercitrin and 2.0 ng/mL for kaempferol‐3‐O‐rutinoside and tiliroside, respectively. Intra‐ and inter‐day precisions were <8.2% and accuracy ranged from −11.5 to 9.7%. The mean extraction recoveries of analytes and IS from rat plasma were >80.4%. The assay was successfully applied to investigate the pharmacokinetic study of the three ingredients after oral administration of Rubus chingii Hu to rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号