首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein‐imprinted polyacrylamide gel beads (IPGB) were synthesized via inverse suspension polymerization, using staphylococcal enterotoxin B (SEB) as template. The adsorption capacity of SEB‐IPGB was almost three times as much as that of non‐imprinted gel beads. The Langmuir adsorption models were applied to describe the equilibrium isotherms. The results showed that an equal class of adsorption was formed in the SEB‐IPGB with the maximum adsorption capacity of 8.40 mg SEB/g imprinted beads. The selectivity test of imprinted beads shows that they exhibited good recognition for SEB as compared with the other proteins. The formation of multiple hydrogen bonds and complementary shape between the imprinting cavities and the template proteins would be the two factors that led to the imprinting effect. The obtained SEB‐IPGB would be used as a potential material for protein toxin separation, extraction, and purification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Antibodies are used in many applications, especially as diagnostic and therapeutic agents. Among the various techniques used for the purification of antibodies, immunoaffinity chromatography is by far the most common. For this purpose, oriented immobilization of antibodies is an important step for the efficiency of purification step. In this study, Fc fragment‐imprinted poly(hydroxyethyl methacrylate) cryogel (MIP) was prepared for the oriented immobilization of anti‐hIgG for IgG purification from human plasma. Non‐imprinted poly(hydroxyethyl methacrylate) cryogel (NIP) was also prepared for random immobilization of anti‐hIgG to compare the adsorption capacities of oriented (MIP/anti‐hIgG) and random (NIP/anti‐hIgG) cryogel columns. The amount of immobilized anti‐hIgG was 19.8 mg/g for the NIP column and 23.7 mg/g for the MIP column. Although the amount of immobilized anti‐hIgG was almost the same for the NIP and MIP columns, IgG adsorption capacity was found to be three times higher than the NIP/anti‐hIgG column (29.7 mg/g) for the MIP/anti‐hIgG column (86.9 mg/g). Higher IgG adsorption capacity was observed from human plasma (up to 106.4 mg/g) with the MIP/anti‐hIgG cryogel column. Adsorbed IgG was eluted using 1.0 m NaCl with a purity of 96.7%. The results obtained here are very encouraging and showed the usability of MIP/anti‐hIgG cryogel prepared via imprinting of Fc fragments as an alternative to conventional immunoaffinity techniques for IgG purification. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
李志平  李辉  刘芬  逯翠梅 《应用化学》2013,30(8):915-921
以硅胶为牺牲载体,石杉碱甲为模板分子,甲基丙烯酸为功能单体,二乙烯基苯为交联剂,偶氮二异丁腈为引发剂,首次制备了石杉碱甲分子印迹聚合物,并用红外光谱、扫描电子显微镜和热重分析研究了印迹聚合物的结构特征,用静态吸附法和Scatchard分析法研究了印迹聚合物的识别效能和表面位点分布特征。 结果表明,石杉碱甲印迹聚合物对模板分子具有较好的选择吸附性能,选择系数为1.399。Scatchard分析表明,印迹聚合物基体中主要存有两类吸附位点,对高亲和位点:平衡离解常数Kd1=0.776 g/L,最大表观结合量Qmax1=0.213 mg/g;对低亲和位点:平衡离解常数Kd2=0.169 g/L,最大表观结合量Qmax2=0.832 mg/g。 当该聚合物用于微固相萃取蛇足石杉粗提液中的石杉碱甲时,石杉碱甲回收率为93.5%,显示了较好的富集效果。  相似文献   

4.
New configurations and applications of molecularly imprinted polymers   总被引:7,自引:0,他引:7  
Molecularly imprinted polymers (MIPs) are applicable in a variety of different configurations. For example, bulk polymers imprinted with beta-lactam antibiotics are presented to be used as stationary phases for the chromatographic separation of beta-lactam antibiotics with both aqueous and organic mobile phases. However, in some analytical applications, monosized spherical beads are preferred over the currently used ground bulk polymers. A precipitation polymerization technique allows preparation of monosized spherical imprinted beads with diameters down to 200 nm having excellent recognition properties for different target molecules. Nevertheless, with current imprinting protocols a substantial amount of template has to be used to prepare the polymer. This can be problematic if the template is poorly soluble, expensive or difficult to obtain. It is shown that for analytical applications, the functional monomer:template ratio can be drastically increased without jeopardizing the polymer's recognition properties. Furthermore, a substantial reduction of the degree of crosslinking is demonstrated, resulting in much more flexible polymers that are useful for example the preparation of thin imprinted films and membranes for sensors. Apart from analysis, MIPs also are applicable in chemical or enzymatic synthesis. For example, MIPs using the product of an enzyme reaction as template are utilized for assisting the synthetic reaction by continuously removing the product from the bulk solution by complexation. This results in an equilibrium shift towards product formation.  相似文献   

5.
A new molecularly imprinted polymer (MIP) for levofloxacin was prepared by the combined use of methacrylic acid and protoporphyrin as functional monomers. The adsorption properties of resultant imprinted polymers were evaluated by equilibrium rebinding experiments. The highest binding capacity of levofloxacin achieved from the optimized imprinted polymer in acetonitrile was 246.26 µmol/g with an imprinting factor of 2.05. A ?uorescence quenching effect was observed when a protoporphyrin‐based imprinted polymer was incubated in the solutions of levofloxacin. The results indicated that the protoporphyrin‐based MIPs were able to create higher binding cavities for template compared with MIPs using only methacrylic acid as a functional monomer. It should be expected that the cooperative use of the protoporphyrin with supplemental different functional monomers may be an alternative to obtain MIP with the improvement of the selectivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The protein C imprinted monolithic cryogel was synthesized using 2‐hydroxyethyl methacrylate by redox cryo‐polymerization method. The prepared monolithic cryogel was characterized by Fourier transform infrared spectroscopy, swelling test, surface area measurements, and scanning electron microscopy. The nonimprinted cryogel was prepared as well for control. Adsorption of protein C from aqueous solutions was investigated in a continuous mode and several parameters affecting adsorption performance were optimized. The maximum protein C adsorption amount was 30.4 mg/g. The selectivity studies were performed by monolithic column studies and fast protein liquid chromatography, using hemoglobin and human serum albumin as competing proteins. The relative selectivity coefficients were 2.37 and 8.89 for hemoglobin and human serum albumin, respectively. Reusability was tested for ten consecutive adsorption–desorption cycles, and no significant change in adsorption capacity was recorded. A pseudo‐second‐order model was suitable to interpret kinetic data, and the Langmuir model suited the adsorption isotherms well.  相似文献   

7.
Human body is greatly exposed to aluminum due to its high abundance in the environment. This nonessential metal is a threat to the patients of chronic renal disorders, as it is easily retained in their plasma and quickly accumulates in different tissues. Thus, there is great need to remove it from the aqueous environment. In this study, Al3+ imprinted semiinterpenetrating polymer network (semi-IPN)-based cryogel composite was prepared and applied for the purification of environmental and drinking water samples from aluminum. Poly (2-hydroxyethyl methacrylate) (pHEMA) discs were produced via cryogenic treatment and imprinted semi-IPN was introduced to the 3-(trimethoxysilyl) propyl acrylatemodified macroporous cryogel discs. The adsorption properties and selectivity of the aluminum (III) imprinted semi-IPN cryogel composite were studied in detail. The imprinted semi-IPN cryogel composite showed good selectivity towards aluminum (III) ions with the imprinting factor (IF) of 76.4 in the presence of competing copper (II), nickle (II), and iron (III) ions. The maximum adsorption capacity of 271 μmol g-1 was obtained for aluminum (III) at pH 7.0 within 10 min using imprinted semi-IPN cryogel composite. The good selectivity and reusability of aluminum (III)-imprinted semi-IPN cryogel composite makes this material an eligible candidate for the purification of drinking water from aluminum (III) leaving important minerals remained in the water.  相似文献   

8.
Molecularly imprinted polymers (MIPs) are artificial receptors which can be tailored to bind target molecules specifically. A new method, using photoinitiated atom‐transfer radical polymerization (ATRP) for their synthesis as monoliths, thin films and nanoparticles is described. The synthesis takes place at room temperature and is compatible with acidic monomers, two major limitations for the use of ATRP with MIPs. The method has been validated with MIPs specific for the drugs testosterone and S‐propranolol. This study considerably widens the range of functional monomers and thus molecular templates which can be used when MIPs are synthesized by ATRP, as well as the range of physical forms of these antibody mimics, in particular films and lithographic patterns, and their post‐functionalization from living chain‐ends.  相似文献   

9.
Molecularly imprinted polymers (MIPs) are being increasingly used as selective adsorbents in different analytical applications. To satisfy the different application purposes, MIPs with well controlled physical forms in different size ranges are highly desirable. For examples, MIP nanoparticles are very suitable to be used to develop binding assays and for microfluidic separations, whereas MIP beads with diameter of 1.5-3 μm can be more appropriate to use in new analytical liquid chromatography systems. Previous studies have demonstrated that imprinted microspheres and nanoparticles can be synthesized using a simple precipitation polymerization method. Despite that the synthetic method is straightforward, the final particle size obtained has been difficult to adjust for a given template. In this work, we initiated to study new synthetic conditions to obtain MIP beads with controllable size in the nano- to micro-meter range, using racemic propranolol as a model template. Varying the composition of the cross-linking monomer allowed the particle size of the MIP beads to be altered in the range of 130 nm to 2.4 μm, whereas the favorable binding property of the imprinted beads remained intact. The chiral recognition sites were further characterized with equilibrium binding analysis using tritium-labeled (S)-propranolol as a tracer. In general, the imprinted sites displayed a high chiral selectivity: the apparent affinity of the (S)-imprinted sites for (S)-propranolol was 20 times that of for (R)-propranolol. Compared to previously reported irregular particles, the chiral selectivity of competitive radioligand binding assays developed from the present imprinted beads has been increased by six to seven folds in an optimized aqueous solvent.  相似文献   

10.
光接枝表面修饰法制备牛血红蛋白的分子印迹微球   总被引:3,自引:0,他引:3  
聚苯乙烯球载体表面经引发转移终止剂修饰后, 采用光接枝表面印迹方法制备了以牛血红蛋白(BHb)为模板分子、丙烯酰胺为功能单体和N,N′-亚甲基双丙烯酰胺为交联剂的分子印迹聚合物微球(MIP). 进一步采用红外光谱(IR)、扫描电子显微镜(SEM)和元素分析对聚合物微球进行了表征, 证实了载体表面成功地接枝了分子印迹层, 并研究了其吸附性能和分子识别选择性能. 结果表明, 采用光接枝表面修饰法制备的分子印迹微球对模板分子有着很好的吸附容量和识别选择性.  相似文献   

11.
The application of molecularly imprinted polymers in the selective adsorption of macromolecules such as proteins by monolithic protein‐imprinted columns requires a macroporous structure, which can be provided by cryogelation at low temperature in which the formation of ice crystals gives a porous structure to the molecularly imprinted polymer. In this study, we applied this technique to synthesize lysozyme‐imprinted polyacrylamide cryogels containing 8% w/v of total monomers and 0.3% w/v of lysozyme. The synthesized cryogel was sponge‐like and elastic with very fast swelling and reshaping properties, showing a swelling ratio of 24.5 ± 3 and gel fraction yield of about 72%. It showed an imprinting effect of 1.58 and a separation factor of 1.37 for cytochrome c as the competing protein. Adsorption studies on the cryogel revealed that it follows the Langmuir isotherm, with a maximum theoretical adsorption capacity of 36.3 mg lysozyme per gram of cryogel. Additionally, it was shown that a salt‐free rebinding solution at low flow rate and pH = 7.0 is favorable for lysozyme rebinding. This kind of monolithic column promises a wide range of application in separation of various biomolecules due to its preparation simplicity, good rebinding characteristics, and macroporosity.  相似文献   

12.
A new type of supermacroporous, monolithic, cryogel affinity adsorbent was developed, allowing the specific capture of urokinase from conditioned media of human fibrosarcoma cell line HT1080. The affinity adsorbent was designed with the objective of using it as a capture column in an integrated perfusion/protein separation bioreactor setup. A comparative study between the utility of this novel cryogel based matrix and the conventional Sepharose based affinity matrix for the continuous capture of urokinase in an integrated bioreactor system was performed. Cu(II)-ion was coupled to epoxy activated polyacrylamide cryogel and Sepharose using iminodiacetic acid (IDA) as the chelating ligand. About 27-fold purification of urokinase from the conditioned culture media was achieved with Cu(II)-IDA-polyacrylamide cryogel column giving specific activity of about 814 Plough units (PU)/mg protein and enzyme yields of about 80%. High yields (95%) were obtained with Cu(II)-IDA-Sepharose column by virtue of its high binding capacity. However, the adsorbent showed lower selectivity as compared to cryogel matrix giving specific activity of 161 PU/mg protein and purification factor of 5.3. The high porosity, selectivity and reasonably good binding capacity of Cu(II)-IDA-polyacrylamide cryogel column make it a promising option for use as a protein capture column in integrated perfusion/separation processes. The urokinase peak pool from Cu(II)-IDA-polyacrylamide cryogel column could be further resolved into separate fractions for high and low molecular weight forms of urokinase by gel filtration chromatography on Sephacryl S-200. The selectivity of the cryogel based IMAC matrix for urokinase was found to be higher as compared to that of Cu(II)-IDA-Sepharose column.  相似文献   

13.
表面分子印迹聚合物纳米线用于蛋白质的特异性识别   总被引:2,自引:0,他引:2  
手性配体交换色谱是拆分手性化合物,特别是氨基酸和羟基酸对映体的一种有效方法,通常以光活性氨基酸或其衍生物为手性选择子,可通过键合及涂渍制备手性固定相,也可作为流动相添加剂来实现手性配体交换色谱分离分析,配体交换键合固定相需要完成载体和手性选择子之间的偶联,键合量因受到载体和制备条件的影响而较难控制,且柱效较低。  相似文献   

14.
A new and facile fabricating method for lysozyme molecularly imprinted polymer beads (lysozyme-MIP beads) in aqueous media was presented. Mesoporous chloromethylated polystyrene beads (MCP beads) containing dithiocarbamate iniferter (initiator transfer agent terminator) were used as supports for the grafting of lysozyme imprinted copolymers with acrylamide and N,N′-methylenebisacrylamide through surface initiated living-radical polymerization (SIP). After the polymerization, a layer of lysozyme-MIP was formed on the MCP beads. The SIP allowed an efficient control of the grafting process and suppressed solution propagation. Therefore, the obtained lysozyme-MIP beads had a large quantity of well-distributed pores on the surface without any visible gel formation in solution and were more advantageous comparing with traditional MIPs which were prepared by traditionally initiated radical polymerization. The obtained composites were characterized by Fourier transform infrared spectroscopy, elemental analysis, nitrogen sorption analysis and scanning electron microscopy. Chromatographic behaviors of the column packed with lysozyme-MIP beads exhibited ability in separating lysozyme from competitive protein (bovine hemoglobin, bovine serum albumin, ovalbumin or cytochrome c) in aqueous mobile phase.  相似文献   

15.
分子印迹是制备对特定分子具有专一性结合能力的聚合物的技术,所制备的聚合物被称为分子印迹聚合物(Molecularly imprinted polymers,MIPs),此类聚合物在分离提纯、模拟酶和传感器等方面均显示出广阔的应用前景,迄今,小分子化合物的印迹技术已经十分成熟。  相似文献   

16.
Molecularly imprinted polymers (MIPs), based on photografting surface-modified polystyrene beads as matrices, were prepared with acrylamide as the functional monomer, bovine hemoglobin as the template molecule and N, N′-methylene bisacrylamide as the crosslinker in a phosphate buffer. The results of IR, scanning electron microscope (SEM) and elemental analyses demonstrated the formation of a grafting polymer layer on the polystyrene-bead surface. Subsequent removal of the template left behind cavities on the surface of the polymer matrix with a shape and an arrangement of functional groups having complementary binding sites with the original template molecule. The adsorption studies showed that the imprinted polymers have a good adsorption capacity and specific recognition for bovine hemoglobin as the template molecule. Our results demonstrated that the polymer prepared via the photografting surface-modified method exhibited better selectivity for the template. Attempts to employ the new method in molecular imprinting techniques may introduce new applications for MIPs and facilitate probable protein separation and purification. __________ Translated from Chemical Journal of Chinese Universities, 2008, 29(1): 64–70  相似文献   

17.
Lectins possess unique binding properties and are of particular value in molecular recognition. However, lectins suffer from several disadvantages, such as being hard to prepare and showing poor storage stability. Boronate‐affinity glycan‐oriented surface imprinting was developed as a new strategy for the preparation of lectin‐like molecularly imprinted polymers (MIPs). The prepared MIPs could specifically recognize an intact glycoprotein and its characteristic fragments, even within a complex sample matrix. Glycan‐imprinted MIPs could thus prove to be powerful tools for important applications such as proteomics, glycomics, and diagnostics.  相似文献   

18.
Porous/magnetic molecularly imprinted polymers (PM‐MIPs) were prepared by Pickering emulsion polymerization. The reaction was carried out in an oil/water emulsion using magnetic halloysite nanotubes as the stabilizer instead of a toxic surfactant. In the oil phase, the imprinting process was conducted by radical polymerization of functional and cross‐linked monomers, and porogen chloroform generated steam under the high reaction temperature, which resulted in some pores decorated with easily accessible molecular binding sites within the as‐made PM‐MIPs. The characterization demonstrated that the PM‐MIPs were porous and magnetic inorganic–polymer composite microparticles with magnetic sensitivity (Ms = 0.7448 emu/g), thermal stability (below 473 K) and magnetic stability (over the pH range of 2.0–8.0). The PM‐MIPs were used as a sorbent for the selective binding of lambdacyhalothrin (LC) and rapidly separated under an external magnetic field. The Freundlich isotherm model gave a good fit to the experimental data. The adsorption kinetics of the PM‐MIPs was well described by pseudo‐second‐order kinetics, indicating that the chemical process could be the rate‐limiting step in the adsorption of LC. The selective recognition experiments exhibited the outstanding selective adsorption effect of the PM‐MIPs for target LC. Moreover, the PM‐MIPs regeneration without significant loss in adsorption capacity was demonstrated by at least four repeated cycles.  相似文献   

19.
An enzyme‐mediated synthetic approach is described for the preparation of molecularly imprinted polymer nanoparticles (MIP‐NPs) in aqueous media. Horseradish peroxidase (HRP) was used to initiate the polymerization of methacrylate or vinyl monomers and cross‐linkers by catalyzing the generation of free radicals. To prevent entrapment of the enzyme in the cross‐linked polymer, and to enable it to be reused, HRP was immobilized on a solid support. MIPs based on 4‐vinylpyridine and 1,4‐bis(acryloyl)piperazine for the recognition of 2,4‐dichlorophenoxyacetic acid (2,4‐D) and salicylic acid were synthesized in an aqueous medium. MIPs for the protein trypsin were also synthesized. MIP nanoparticles with sizes between 50 and 300 nm were obtained with good binding properties, a good imprinting effect, and high selectivity for the target molecule. The reusability of immobilized HRP for MIP synthesis was shown for several batches.  相似文献   

20.
A novel super‐macroporous monolithic composite cryogel was prepared by embedding macroporous cellulose beads into poly(hydroxyethyl methacrylate) cryogel. The cellulose beads were fabricated by using a microchannel liquid‐flow focusing and cryopolymerization method, while the composite cryogel was prepared by cryogenic radical polymerization of the hydroxyethyl methacrylate monomer with poly(ethylene glycol) diacrylate as cross‐linker together with the cellulose beads. After graft polymerization with (vinylbenzyl)trimethylammonium chloride, the composite cryogel was applied to separate immunoglobulin‐G and albumin from human serum. Immunoglobulin‐G with a mean purity of 83.2% and albumin with a purity of 98% were obtained, indicating the composite cryogel as a promising chromatographic medium in bioseparation for the isolation of important bioactive proteins like immunoglobulins and albumins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号