首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize the preclinical plasma pharmacokinetics of entrectinib, a reproducible and precise assay is necessary. In this study, we developed and validated a simple ultra‐performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method for the measurement of entrectinib using carbamazepine as the internal standard in rat plasma. Sample preparation was a simple protein precipitation with acetonitrile, then entrectinib was eluted on an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm) using a gradient elution with a mobile phase composed of acetonitrile (A) and 0.1% formic acid in water (B). Detection was achieved using multiple‐reaction monitoring in positive ion electrospray ionization mode. The method showed good linearity over the concentration range of 1–250 ng/mL (r2 > 0.9951). The intra‐ and inter‐day precision was determined with the values of 6.3–12.9 and 2.6–6.9%, respectively, and accuracy values of 0.5–11.6%. Matrix effect, extraction recovery, and stability data all met the acceptance criteria of US Food and Drug Administration guidelines for bioanalytical method validation. The method was successfully applied to a pharmacokinetic study. In this study, we developed the complete validated method for the quantification of entrectinib in rat plasma.  相似文献   

2.
A rapid, sensitive and selective ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and validated for the determination of febuxostat in dog plasma. Using paclitaxel as an internal standard (IS), a simple liquid–liquid extraction method with ethyl acetate was adopted for plasma sample pretreatment. Separation was carried out on an Acquity UPLC BEH C18 column with a mobile phase consisting of acetonitrile and water (containing 0.2% formic acid). The assay was linear in the concentration ranged from 5 to 5000 ng/mL with a lower limit of quantification of 5 ng/mL for febuxostat. The single run analysis was as short as 2.0 min. Finally, the developed method was successfully applied to the pharmacokinetic study of febuxostat tablets following oral administration at a single dose of 40 mg in beagle dogs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, an accurate and reliable method of ultra‐performance liquid chromatography coupled with a triple‐quadrupole tandem mass spectrometry was firstly developed and fully validated for the simultaneous determination of epicatechin, neoastilbin, astilbin, isoastilbin, engeletin and resveratrol in rat plasma after administration of Smilacis glabrae Roxb. extract. Naringenin was used as an internal standard (IS). The analyte and IS were separated on a C18 column by gradient elution with a mobile phase of acetonitrile–0.3% acetic acid at a flow rate of 0.25 mL/min for a total run time of 8 min. The method was validated in terms of selectivity, linearity, precision, accuracy, extraction recovery, matrix effect and stability. The developed method was successfully applied to determine the main pharmacokinetic parameters of six components in rat plasma.  相似文献   

4.
A highly sensitive and rapid ultra‐high‐performance liquid chromatography–tandem mass spectrometry method was developed and validated for the determination of gambogenic acid in dog plasma. Gambogic acid was used as an internal standard (IS). After a simple liquid–liquid extraction by ethyl acetate, the analyte and internal standard were separated on an Acquity BEH C18 (100 × 2.1 mm, 1.7 µm; Waters ) column at a flow rate of 0.2 mL/min, using 0.1% formic acid–methanol (10:90, v/v) as mobile phase. Electrospray ionization source was applied and operated in the positive ion mode. Multiple reaction monitoring mode with the transitions m/z 631.3 → 507.3 and m/z 629.1 → 573.2 was used to quantify gambogenic acid and the internal standard, respectively. The calibration curves were linear in the range of 5–1000 ng/mL, with a coefficient of determination (r) of 0.999 and good calculated accuracy and precision. The low limit of quantification was 5 ng/mL. The intra‐and inter‐day precisions (relative standard deviations) were <15%. The methodology recoveries were more than 66.63%. This validated method was successfully applied to a pharmacokinetic study after intravenous injection administration of gambogenic acid in dogs at a dose of 1 mg/kg. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive and reliable ultra‐high‐performance liquid chromatography with tandem mass spectrometry (UHPLC–MS/MS) method was developed and validated for simultaneous determination of l ‐tetrahydropalmatine (l ‐THP) and its active metabolites l ‐isocorypalmine (l ‐ICP) and L ‐corydalmine (l ‐CD) in rat plasma. The analytes were extracted by liquid–liquid extraction and separated on a Bonshell ASB C18 column (2.1 × 100 mm; 2.7 μm; Agela) using acetonitrile–formic acid aqueous as mobile phase at a flow rate of 0.2 mL/min in gradient mode. The method was validated over the concentration range of 4.00–2500 ng/mL for l ‐THP, 0.400–250 ng/mL for l ‐ICP and 1.00–625 ng/mL for l ‐CD. Intra‐ and inter‐day accuracy and precision were within the acceptable limits of <15% at all concentrations. Correlation coefficients (r ) for the calibration curves were >0.99 for all analytes. The quantitative method was successfully applied for simultaneous determination of l ‐THP and its active metabolites in a pharmacokinetic study after oral administration with l ‐THP at a dose of 15 mg/kg to rats.  相似文献   

6.
A highly sensitive and selective ultra‐performance liquid chromatography–tandem mass spectrometry method is described for the simultaneous determination of nomegestrol acetate (NOMAC), a highly selective progestogen, and estradiol (E2), a natural estrogen in human plasma. NOMAC was obtained from plasma by solid‐phase extraction, while E2 was first separated by liquid–liquid extraction with methyl tert‐butyl ether followed by derivatization with dansyl chloride. Deuterated internal standards, NOMAC‐d5 and E2‐d4 were used for better control of extraction conditions and ionization efficiency. The assay recovery of the analytes was within 90–99%. The analytes were separated on UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column using a mobile phase comprising of acetonitrile and 3.0 mm ammonium trifluoroacetate in water (80:20, v/v) with a resolution factor (Rs) of 3.21. The calibration curves were linear from 0.01 to 10.0 ng/mL for NOMAC and from 1.00 to 1000 pg/mL for E2, respectively. The intra‐ and inter‐batch precision was ≤5.8% and the accuracy of quality control samples ranged from 96.7 to 103.4% for both analytes. The practical applicability of the method is demonstrated by analyzing samples from 18 healthy postmenopausal women after oral administration of 2.5 mg nomegestrol acetate and 1.5 mg estradiol film‐coated tablets under fasting.  相似文献   

7.
Psoralea Corylifolia L. is a traditional Chinese medicine with many beneficial effects in medical therapies. Bakuchiol was the main active ingredient of Psoralea Corylifolia L., used for the treatment of various diseases and also as a natural food additive. A specific and reliable ultra‐high performance liquid chromatography–tandem mass spectrometry has been developed and fully validated for the quantification of bakuchiol in rat plasma. Chromatographic separation of bakuchiol and an internal standard, daidzein, was achieved on a Hypersil Gold C18 column with gradient elution that consisted of methanol and water at a flow rate of 0.2 mL/min. The compounds were detected at negative ionization mode using mass transition m/z 255.2 → 172.0 and 252.9 → 132.0 for bakuchiol and daidzein, respectively. Good linearity was obtained over the range of 2–1000 ng/mL and the lower limit of quantification was 2 ng/mL. The intra‐ and inter‐day accuracies ranged from 91.1 to 105.7% and precisions (relative standard deviations) were within 9.3%. Bakuchiol was found to be stable under three freeze–thaw cycles, short‐term temperature, post‐preparative and long‐term temperature conditions. The method was applied to a pharmacokinetic study of bakuchiol intravenously administered to rats at a dose of 5 mg/kg. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method has been developed and validated for the determination of gymnemagenin (GMG), a triterpene sapogenin from Gymnema sylvestre, in rat plasma using withaferin A as the internal standard (IS). Plasma samples were simply extracted using liquid–liquid extraction with tetra‐butyl methyl ether. Chromatographic separation was performed on Luna C18 column using gradient elution of water and methanol (with 0.1% formic acid and 0.3% ammonia) at a flow rate of 0.8 mL/min. GMG and IS were eluted at 4.64 and 4.36 min, ionized in negative and positive mode, respectively, and quantitatively estimated using multiple reaction monitoring (MRM) mode. Two MRM transitions were selected at m/z 505.70 → 455.5 and m/z 471.50 → 281.3 for GMG and IS, respectively. The assay was linear over the concentration range of 5.280–300.920 ng/mL. The mean plasma extraction recoveries for GMG and IS were found to be 80.92 ± 8.70 and 55.63 ± 0.76%, respectively. The method was successfully applied for the determination of pharmacokinetic parameters of GMG after oral administration of G. sylvestre extract. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Dendrobine, considered as the major active alkaloid compound, has been used for the quality control and discrimination of Dendrobium which is documented in the Chinese Pharmacopoeia. In this work, a sensitive and simple ultra‐performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method for determination of dendrobine in rat plasma is developed. After addition of caulophyline as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 (2.1 ×100 mm, 1.7 µm) column with acetonitrile and 0.1% formic acid as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 264.2 → 70.0 for dendrobine and m/z 205.1 → 58.0 for IS. Calibration plots were linear throughout the range 2–1000 ng/mL for dendrobine in rat plasma. The RSDs of intra‐day and inter‐day precision were both <13%. The accuracy of the method was between 95.4 and 103.9%. The method was successfully applied to pharmacokinetic study of dendrobine after intravenous administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive, rapid and specific liquid chromatography–electrospray ionization–tandem mass spectrometry method was developed and validated for the determination of aristolochic acid‐I (AA‐I) in rat plasma. Finasteride was used as the internal standard (IS). The analyte was separated on a Zorbax Eclipse XDB‐C18 column by isocratic elution with methanol‐10 mM ammonium acetate (75:25, v/v, pH = 7.3) at a flow rate of 0.25 mL/min, and analyzed by mass spectrometry in positive multiple reaction monitoring mode. The precursor‐to‐product ion transitions of m/z 359.0 → 298.2 and m/z 373.1 → 305.2 were used to detect AA‐I and IS, respectively. Good linearity was achieved over a range of 0.4–600 ng/mL. Intra‐ and inter‐day precisions measured as relative standard deviation were less than 13.5%, and accuracy ranged from 94.2 to 97.5%. The developed method was successfully applied in the pharmacokinetic study of AA‐I in rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Carbenoxolone is a derivative of glycyrrhetinic acid found in the root of Glycyrrhiza glabra, colloquially known as licorice. It has been used as a treatment for peptic and oral ulcers. In recent years, carbenoxolone has been utilized in basic research for its ability to block gap junctional communication. Better understanding the distribution of carbenoxolone after systemic administration can lead to a better understanding of its potential sites of action. Presented is an ultra high‐performance liquid chromatography tandem mass spectrometer (UHPLC–MS/MS) method for the identification and quantification of carbenoxolone in mouse blood and brain tissue. Twenty mice were injected intraperitoneally with 25 mg/kg carbenoxolone and brain tissue and blood were collected for analysis. Blood concentrations (mean ± SD) at 15, 30, 60 and 120 min were determined to be (n = 5) 5394 ± 778, 2636 ± 836, 1564 ± 541 and 846 ± 252 ng/mL, respectively. Brain concentrations (mean ± SD) at 15, 30, 60 and 120 mins were determined to be (n = 5) 171 ± 62, 102 ± 35, 55 ± 10 and 27 ± 9 ng/g, respectively. The analysis of these specimens at the four different time points resulted in blood and brain half‐lives in mice of ~43 and 41 min, respectively. The UHPLC–MS/MS method was determined to be sensitive and robust for quantification of carbenoxolone.  相似文献   

12.
A simple, sensitive and rapid liquid chromatography tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the determination of plasma isoorientin levels in rats. After simple protein precipitation using methanol, chromatographic analysis was performed using a Synergi 4μ polar‐RP 80A column (150 × 2.0 mm, 4μm) under isocratic conditions and a mobile phase consisting of 0.1% formic acid in water and methanol (80:20, v/v) at a flow rate of 0.2 mL/min. In positive electrospray ionization mode, the protonated precursor and product ion transitions of isoorientin (m/z 449.0 → 299.1) and of puerarin (the internal standard; m/z 417.1 → 297.1) were acquired by multiple reaction monitoring. Calibration curves obtained for plasma showed good linearity over the concentration range 1–1000 ng/mL. The lower limit of quantification was 1 ng/mL. Intra‐ and inter‐day precisions were within 8.8% relative standard deviation. Accuracies ranged from 92.1 and 109.7%. The isoorientin stability in rat plasma under typical handling/storage conditions also found to be acceptable. The developed method was applied successfully to a pharmacokinetic study of isoorientin orally administered as the methanol extract of Vaccinium bracteatum Thunb. or administered as pure isoorientin.  相似文献   

13.
Omarigliptin is a novel long‐acting dipeptidyl peptidase‐4 inhibitor used for the treatment of type 2 diabetes. In this work, a sensitive and selective ultra‐high pressure liquid chromatography tandem mass spectrometry method was developed and validated for the determination of omarigliptin in rat plasma. Sample preparation was performed by protein precipitation with acetonitrile. Chromatographic separation of analytes was achieved on an RRHD Eclipse Plus C18 column (2.1 × 50 mm, 1.8 μm), using gradient mobile phase (0.1% formic acid–acetonitrile) at a flow rate of 0.4 mL/min. Detection was performed in multiple reaction monitoring mode, with target fragment ions m/z 399.1 → 152.9 for omarigliptin and m/z 237.1 → 194 for the internal standard. The total run time was 4 min. Retention time of omarigliptin and internal standard was 1.25 and 2.12 min, respectively. Relative standard deviation (%) of the intra‐ and inter‐day precision was below 10.0%, and accuracy was between 97.9% and 105.3%. Calibration curve was established over the range 2–5000 ng/mL with good linearity. The lower limit of quantification and limit of detection of omarigliptin were 2 and 0.25 ng/mL, respectively. Mean recoveries were in the range 87.3–95.1% for omarigliptin. No matrix effect was observed in this method. This novel method has been successfully applied to a pharmacokinetic study of omarigliptin in rats. The absolute bioavailability of omarigliptin was identified as high as 87.31%.  相似文献   

14.
15.
To implement and validate an analytical method by ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC MS/MS) to quantify mycophenolic acid (MPA) in kidney transplant patients. Quantification of MPA was performed in an ACQUITY UPLC H Class system coupled to a Xevo TQD detector and it was extracted from plasma samples by protein precipitation. The chromatographic separation was achieved through an ACQUITY HSS C18 SB column with 0.1% formic acid and acetonitrile (60:40 vol/vol) as mobile phase. The pharmacokinetic parameters were calculated by non‐compartmental analysis of MPA plasma concentrations from 10 kidney transplant patients. The linear range for MPA quantification was 0.2–30 mg/L with a limit of detection of 0.07 mg/L; the mean extraction recovery was 99.99%. The mean intra‐ and inter‐day variability were 2.98% and 3.4% with a percentage of deviation of 8.4% and 6.6%, respectively. Mean maximal concentration of 10 mg/L at 1.5 h, area under the concentration–time curve of 36.8 mg·h/L, elimination half‐life of 3.9 h, clearance of 0.32 L/h/kg and volume of distribution of 1.65 L/kg were obtained from MPA pharmacokinetics profiles. A simple, fast and reliable UPLC–MS/MS method to quantify MPA in plasma was validated and has been applied for pharmacokinetic analysis in kidney transplant patients.  相似文献   

16.
TAK‐875 is a selective partial agonist of human GPR40 receptor, which was unexpectedly terminated at phase III clinical trials owing to its severe hepatotoxicity. The purpose of this study was to investigate the pharmacokinetics of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma by liquid chromatography tandem mass spectrometry (LC–MS/MS). Plasma samples were extracted with ethyl acetate and chromatographic separations were achieved on a C18 column with water and acetonitrile containing 0.05% ammonium hydroxide as mobile phase. The sample was detected in selected reaction monitoring mode with precursor‐to‐product ion transitions being m/z 523.2 → 148.1, m/z 699.3 → 113.1 and m/z 425.2 → 113.1 for TAK‐875, TAK‐875‐acylglucuronide and IS, respectively. The assay showed good linearity over the tested concentration ranges (r > 0.9993), with the LLOQ being 0.5 ng/mL for both analytes. The extraction recovery was >78.45% and no obvious matrix effect was detected. The highly sensitive LC–MS/MS method has been further applied for the pharmacokinetic study of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma. Pharmacokinetics results revealed that oral bioavailability of TAK‐875 was 86.85%. The in vivo exposures of TAK‐875‐acylglucuronide in terms of AUC0–t were 17.54 and 22.29% of that of TAK‐875 after intravenous and oral administration, respectively.  相似文献   

17.
Choline fenofibrate is the choline salt of fenofibric acid, which releases free fenofibric acid in the gastrointestinal tract. To estimate the absolute oral bioavailability of fenofibric acid and choline fenofibrate, a novel and sensitive UPLC–MS/MS method with liquid–liquid extraction procedure was developed for the determination of fenofibric acid in rat plasma. The separation was achieved on a Phenomenex Kinetex C18 column (50 × 2.1 mm, 2.6 μm) containing 2 mm ammonium acetate–methanol with a gradient elution program. Validations of this method including specificity, sensitivity (limit of quantification, 5 ng/mL), linearity (0.005–10 μg/mL), accuracy (within ±4.3%), precision (intra‐ and inter‐day coefficient of variation <11.3%), recovery (94.9–105.2% for fenofibric acid), matrix effect, stability and dilution, were all within acceptable limits. This method successfully supported the determination of fenofibric acid and choline fenofibrate. The absolute oral bioavailability was 93.4% for choline fenofibrate and 40.0% for fenofibric acid. These results suggested that choline fenofibrate and fenofibric acid had a better in vivo pharmacokinetic behavior than that of fenofibrate. The two new orally administrated pharmaceuticals, fenofibric acid and choline fenofibrate, can be developed as alternatives to fenofibrate.  相似文献   

18.
Tilianin is an active flavonoid glycoside found in many medical plants. Data are lacking regarding its pharmacokinetics and disposition in vivo. The objective of this study was to develop a sensitive, reliable and validated ultra‐high‐performance liquid chromatography with tandem mass spectrometry (UHPLC–MS/MS) method to simultaneously quantify tilianin and its main metabolites and to determine its pharmacokinetics in wild‐type and breast cancer resistance protein knockout (Bcrp1−/−) FVB mice. Chromatographic separation was accomplished on a C18 column by utilizing acetonitrile and 0.5 mm ammonium acetate as the mobile phase. Mass spectrometric detection was performed using electrospray ionization in both positive and negative modes. The results showed that the precision, accuracy and recovery, as well as the stability of tilianin and its metabolites in mouse plasma, were all within acceptable limits. Acacetin‐7‐glucuronide and acacetin‐7‐sulfate were the major metabolites of tilianin in mouse plasma. Moreover, systemic exposure of acacetin‐7‐sulfate was significantly higher in Bcrp1 (−/−) FVB mice compared with wild‐type FVB mice. In conclusion, the fully validated UHPLC–MS/MS method was sensitive, reliable, and was successfully applied to assess the pharmacokinetics of tilianin in wild‐type and Bcrp1 (−/−) FVB mice. Breast cancer resistance protein had a significant impact on the elimination of the sulfated metabolite of tilianin in vivo.  相似文献   

19.
An LC‐MS/MS method was developed for the simultaneous determination of vitexin and isovitexin in rat plasma, using puerarin as the internal standard (IS). Plasma samples extracted with protein precipitation procedure were separated on a Diamonsil® C18 column (150 × 4.6 mm, 5 µm) with a mobile phase composed of methanol and 0.1% formic acid (45:55, v/v). The detection was accomplished by multiple reaction monitoring mode in positive electrospray ionization source. The optimized mass transition ion‐pairs for quantitation were m/z 431.2 → 311.1 for vitexin and isovitexin, and m/z 415.1 → 295.1 for IS. The total run time was 7.5 min for each injection. The calibration curves were linear (r2 > 0.99) over the investigated concentration range (2.00–2000 ng/mL) and the lower limits of quantification were 2.00 ng/mL in rat plasma sample. The intra‐ and inter‐day relative standard deviations were no more than 14.9% and the relative errors were within the range of ?3.2–2.1%. The extraction recoveries for both compounds were between 89.3 and 97.3%. The robust LC‐MS/MS method was further applied in the pharmacokinetic study in Sprague–Dawley rats after oral administration of Santalum album L. leaves extract at a dose of 116 mg/kg. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Therapeutic drug monitoring of antiepileptic drugs is widely practiced to achieve optimal efficacy and avoid adverse side effects. We describe an ultra‐high‐performance liquid chromatography tandem mass spectrometry (UHPLC/MS/MS) method developed for the monitoring of four frequently prescribed antiepileptic drugs – lamotrigine, levetiracetam, oxcarbazepine and topiramate. The main pharmacologically active metabolite of oxcarbazepine (mono‐hydroxy‐derivative metabolite, MHD) was also quantified. After addition of internal standards and a simple stage of protein precipitation, plasmatic samples were analyzed on a C18 column. All antiepileptic drugs were separated and quantified in 6 min, without interference. A good linearity was observed all over the calibration range (r2 > 0.99), up to 20 μg/mL (40 μg/mL for MHD). The limit of quantification was 0.20 μg/mL (0.40 μg/mL for MHD) with precision and accuracy ranging from 1.0 to 2.1% and from 96.7 to 110.8%, respectively. Intra‐ and inter‐day precision and accuracy values were within 15%. No significant matrix effect was observed for all analytes. Clinical application was successfully evaluated in 259 samples from patients treated for epilepsy or bipolar disorders. In conclusion, a rapid, specific and sensitive UHPLC/MS/MS method was developed and validated for simultaneous quantification of antiepileptic drugs, suitable for therapeutic drug monitoring in neurology and psychiatry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号