首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 372 毫秒
1.
A time‐fractional reaction–diffusion initial‐boundary value problem with periodic boundary condition is considered on Q ? Ω × [0, T] , where Ω is the interval [0, l] . Typical solutions of such problem have a weak singularity at the initial time t = 0. The numerical method of the paper uses a direct discontinuous Galerkin (DDG) finite element method in space on a uniform mesh, with piecewise polynomials of degree k ≥ 2 . In the temporal direction we use the L1 approximation of the Caputo derivative on a suitably graded mesh. We prove that at each time level of the mesh, our L1‐DDG solution is superconvergent of order k + 2 in L2(Ω) to a particular projection of the exact solution. Moreover, the L1‐DDG solution achieves superconvergence of order (k + 2) in a discrete L2(Q) norm computed at the Lobatto points, and order (k + 1) superconvergence in a discrete H1(Q) seminorm at the Gauss points; numerical results show that these estimates are sharp.  相似文献   

2.
In this article we consider the spectral Galerkin method with the implicit/explicit Euler scheme for the two‐dimensional Navier–Stokes equations with the L2 initial data. Due to the poor smoothness of the solution on [0,1), we use the the spectral Galerkin method based on high‐dimensional spectral space HM and small time step Δt2 on this interval. While on [1,∞), we use the spectral Galerkin method based on low‐dimensional spectral space Hm(m = O(M1/2)) and large time step Δt. For the spectral Galerkin method, we provide the standard H2‐stability and the L2‐error analysis. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

3.
In the present study, the operator splitting techniques based on the quintic B‐spline collocation finite element method are presented for calculating the numerical solutions of the Rosenau–KdV–RLW equation. Two test problems having exact solutions have been considered. To demonstrate the efficiency and accuracy of the present methods, the error norms L2 and L with the discrete mass Q and energy E conservative properties have been calculated. The results obtained by the method have been compared with the exact solution of each problem and other numerical results in the literature, and also found to be in good agreement with each other. A Fourier stability analysis of each presented method is also investigated.  相似文献   

4.
L‐error estimates for B‐spline Galerkin finite element solution of the Rosenau–Burgers equation are considered. The semidiscrete B‐spline Galerkin scheme is studied using appropriate projections. For fully discrete B‐spline Galerkin scheme, we consider the Crank–Nicolson method and analyze the corresponding error estimates in time. Numerical experiments are given to demonstrate validity and order of accuracy of the proposed method. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 877–895, 2016  相似文献   

5.
In the paper, we first investigate symmetries of isospectral and non‐isospectral four‐potential Ablowitz–Ladik hierarchies. We express these hierarchies in the form of un,t= LmH(0) , where m is an arbitrary integer (instead of a nature number) and L is the recursion operator. Then by means of the zero‐curvature representations of the isospectral and non‐isospectral flows, we construct symmetries for the isospectral equation hierarchy as well as non‐isospectral equation hierarchy, respectively. The symmetries, respectively, form two centerless Kac‐Moody‐Virasoro algebras. The recursion operator L is proved to be hereditary and a strong symmetry for this isospectral equation hierarchy. Besides, we make clear for the relation between four‐potential and two‐potential Ablowitz–Ladik hierarchies. The even order members in the four‐potential Ablowitz–Ladik hierarchies together with their symmetries and algebraic structures can be reduced to two‐potential case. The reduction keeps invariant for the algebraic structures and the recursion operator for two potential case becomes L2 .  相似文献   

6.
We are interested in finding the velocity distribution at the wings of an aeroplane. Within the scope of a three — dimensional linear theory we analyse a model which is formulated as a mixed screen boundary value problem for the Helmholtz equation (Δ +k2)Φ = 0 in ?3\s where Φ denotes the perturbation velocity potential, induced by the presence of the wings and s :=L UW with the projection L of the wings onto the (x,y)- plane and the wake W. Not all Cauchy data are given explicitly on L, respectively W. These missing Cauchy data depend on the wing circulation Γ· Γ has to be fixed by the Kutta–Joukovskii condition: Λ Φ should be finite near the trailing edge xt of L. To fulfil this condition in a way that all appearing terms can be defined mathematically exactly and belong to spaces which are physically meaningful, we propose to fix Γ by the condition of vanishing stress intensity factors of Φ near xt up to a certain order such that ΛΦ|xt ?W2?(xt)? L2(xt),?>0. In the two–dimensional case, and if L is the left half–plane in ?2, we have an explicit formula to calculate Γ and we can control the regularity of Γ and Φ.  相似文献   

7.
In this paper, a high‐order accurate numerical method for two‐dimensional semilinear parabolic equations is presented. We apply a Galerkin–Legendre spectral method for discretizing spatial derivatives and a spectral collocation method for the time integration of the resulting nonlinear system of ordinary differential equations. Our formulation can be made arbitrarily high‐order accurate in both space and time. Optimal a priori error bound is derived in the L2‐norm for the semidiscrete formulation. Extensive numerical results are presented to demonstrate the convergence property of the method, show our formulation have spectrally accurate in both space and time. John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a fast second‐order accurate difference scheme is proposed for solving the space–time fractional equation. The temporal Caputo derivative is approximated by ?L2 ‐1σ formula which employs the sum‐of‐exponential approximation to the kernel function appeared in Caputo derivative. The second‐order linear spline approximation is applied to the spatial Riemann–Liouville derivative. At each time step, a fast algorithm, the preconditioned conjugate gradient normal residual method with a circulant preconditioner (PCGNR), is used to solve the resulting system that reduces the storage and computational cost significantly. The unique solvability and unconditional convergence of the difference scheme are shown by the discrete energy method. Numerical examples are given to verify numerical accuracy and efficiency of the difference schemes.  相似文献   

9.
We consider the Fisher–KPP equation with advection: ut=uxx?βux+f(u) on the half‐line x∈(0,), with no‐flux boundary condition ux?βu = 0 at x = 0. We study the influence of the advection coefficient ?β on the long time behavior of the solutions. We show that for any compactly supported, nonnegative initial data, (i) when β∈(0,c0), the solution converges locally uniformly to a strictly increasing positive stationary solution, (ii) when β∈[c0,), the solution converges locally uniformly to 0, here c0 is the minimal speed of the traveling waves of the classical Fisher–KPP equation. Moreover, (i) when β > 0, the asymptotic positions of the level sets on the right side of the solution are (β + c0)t + o(t), and (ii) when βc0, the asymptotic positions of the level sets on the left side are (β ? c0)t + o(t). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
We study second‐order finite‐volume schemes for the non‐linear hyperbolic equation ut(x, t) + div F(x, t, u(x, t)) = 0 with initial condition u0. The main result is the error estimate between the approximate solution given by the scheme and the entropy solution. It is based on some stability properties verified by the scheme and on a discrete entropy inequality. If u0LBVloc(ℝN), we get an error estimate of order h1/4, where h defines the size of the mesh. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
This article deals with the numerical solution to some models described by the system of strongly coupled reaction–diffusion equations with the Neumann boundary value conditions. A linearized three‐level scheme is derived by the method of reduction of order. The uniquely solvability and second‐order convergence in L2‐norm are proved by the energy method. A numerical example is presented to demonstrate the accuracy and efficiency of the proposed method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

12.
In this work, numerical solution of nonlinear modified Burgers equation is obtained using an improvised collocation technique with cubic B‐spline as basis functions. In this technique, cubic B‐splines are forced to satisfy the interpolatory condition along with some specific end conditions. Crank–Nicolson scheme is used for temporal domain and improvised cubic B‐spline collocation method is used for spatial domain discretization. Quasilinearization process is followed to tackle the nonlinear term in the equation. Convergence of the technique is established to be of order O(h4 + Δt2) . Stability of the technique is examined using von‐Neumann analysis. L2 and L error norms are calculated and are compared with those available in existing works. Results are found to be better and the technique is computationally efficient, which is shown by calculating CPU time.  相似文献   

13.
A linearized Crank–Nicolson‐type scheme is proposed for the two‐dimensional complex Ginzburg–Landau equation. The scheme is proved to be unconditionally convergent in the L2 ‐norm by the discrete energy method. The convergence order is \begin{align*}\mathcal{O}(\tau^2+h_1^2+h^2_2)\end{align*}, where τ is the temporal grid size and h1,h2 are spatial grid sizes in the x ‐ and y ‐directions, respectively. A numerical example is presented to support the theoretical result. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

14.
The Camassa–Holm (CH) system is a strong nonlinear third‐order evolution equation. So far, the numerical methods for solving this problem are only a few. This article deals with the finite difference solution to the CH equation. A three‐level linearized finite difference scheme is derived. The scheme is proved to be conservative, uniquely solvable, and conditionally second‐order convergent in both time and space in the discrete L norm. Several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 451–471, 2014  相似文献   

15.
In this paper, we consider the Petrov–Galerkin spectral method for fourth‐order elliptic problems on rectangular domains subject to non‐homogeneous Dirichlet boundary conditions. We derive some sharp results on the orthogonal approximations in one and two dimensions, which play important roles in numerical solutions of higher‐order problems. By applying these results to a fourth‐order problem, we establish the H2‐error and L2‐error bounds of the Petrov–Galerkin spectral method. Numerical experiments are provided to illustrate the high accuracy of the proposed method and coincide well with the theoretical analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The unique global existence of a solution to nonstationary Navier–Stokes system with prescribed nonzero flux F(t) in an infinite three‐dimensional pipe is proved. The obtained solution remains close to the corresponding nonstationary Poiseuille flow. Moreover, it converges to the Poiseuille flow as |x3|→∞. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The aim of this paper is to propose mixed two‐grid finite difference methods to obtain the numerical solution of the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. The finite difference equations at all interior grid points form a large‐sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a family of finite difference methods for discretizing the spatial and time derivatives. The obtained system has been solved by two‐grid method, where the two‐grid method is used for solving the large‐sparse linear systems. Also, in the proposed method, the spectral radius with local Fourier analysis is calculated for different values of h and Δt. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Given a graph L, in this article we investigate the anti‐Ramsey number χS(n,e,L), defined to be the minimum number of colors needed to edge‐color some graph G(n,e) with n vertices and e edges so that in every copy of L in G all edges have different colors. We call such a copy of L totally multicolored (TMC). In 7 among many other interesting results and problems, Burr, Erd?s, Graham, and T. Sós asked the following question: Let L be a connected bipartite graph which is not a star. Is it true then that In this article, we prove a slightly weaker statement, namely we show that the statement is true if L is a connected bipartite graph, which is not a complete bipartite graph. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 147–156, 2006  相似文献   

19.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009  相似文献   

20.
We consider the stability of an efficient Crank–Nicolson–Adams–Bashforth method in time, finite element in space, discretization of the Leray‐α model. We prove finite‐time stability of the scheme in L2, H1, and H2, as well as the long‐time L‐stability of the scheme under a Courant‐Freidrichs‐Lewy (CFL)‐type condition. Numerical experiments are given that are in agreement with the theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1155–1183, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号