首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In this article, an efficient algorithm for the evaluation of the Caputo fractional derivative and the superconvergence property of fully discrete finite element approximation for the time fractional subdiffusion equation are considered. First, the space semidiscrete finite element approximation scheme for the constant coefficient problem is derived and supercloseness result is proved. The time discretization is based on the L1‐type formula, whereas the space discretization is done using, the fully discrete scheme is developed. Under some regularity assumptions, the superconvergence estimate is proposed and analyzed. Then, extension to the case of variable coefficients is also discussed. To reduce the computational cost, the fast evaluation scheme of the Caputo fractional derivative to solve the fractional diffusion equations is designed. Finally, numerical experiments are presented to support the theoretical results.  相似文献   

2.
Summary We construct and analyze finite element methods for approximating the equations of linear elastodynamics, using mixed elements for the discretization of the spatial variables. We consider two different mixed formulations for the problem and analyze semidiscrete and up to fourth-order in time fully discrete approximations.L 2 optimal-order error estimates are proved for the approximations of displacement and stress.Work supported in part by the Hellenic State Scholarship Foundation  相似文献   

3.
L‐error estimates for finite element for Galerkin solutions for the Benjamin‐Bona‐Mahony‐Burgers (BBMB) equation are considered. A priori bound and the semidiscrete Galerkin scheme are studied using appropriate projections. For fully discrete Galerkin schemes, we consider the backward Euler method and analyze the corresponding error estimates. For a second order accuracy in time, we propose a three‐level backward method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

4.
A new mixed scheme which combines the variation of constants and the H 1-Galerkin mixed finite element method is constructed for nonlinear Sobolev equation with nonlinear convection term. Optimal error estimates are derived for both semidiscrete and fully discrete schemes. Finally, some numerical results are given to confirm the theoretical analysis of the proposed method.  相似文献   

5.
The Legendre spectral and pseudospectral approximations are proposed for the standard Zakharov equations with initial boundary conditions. Optimal H1 error estimate of the method is given for both semidiscrete and fully discrete schemes. The uniform convergence for the parameter ε relative to the acoustic speed is proved. Moreover, the multidomain Legendre spectral scheme is also constructed, which can be implemented in parallel. Finally, numerical results in single domain and multidomain verify the high accuracy of the Legendre spectral method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

6.
In this article a standard mortar finite element method and a mortar element method with Lagrange multiplier are used for spatial discretization of a class of parabolic initial‐boundary value problems. Optimal error estimates in L(L2) and L(H1)‐norms for semidiscrete methods for both the cases are established. The key feature that we have adopted here is to introduce a modified elliptic projection. In the standard mortar element method, a completely discrete scheme using backward Euler scheme is discussed and optimal error estimates are derived. The results of numerical experiments support the theoretical results obtained in this article. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

7.
In this paper, we propose an efficient numerical scheme for magnetohydrodynamics (MHD) equations. This scheme is based on a second order backward difference formula for time derivative terms, extrapolated treatments in linearization for nonlinear terms. Meanwhile, the mixed finite element method is used for spatial discretization. We present that the scheme is unconditionally convergent and energy stable with second order accuracy with respect to time step. The optimal L 2 and H 1 fully discrete error estimates for velocity, magnetic variable and pressure are also demonstrated. A series of numerical tests are carried out to confirm our theoretical results. In addition, the numerical experiments also show the proposed scheme outperforms the other classic second order schemes, such as Crank-Nicolson/Adams-Bashforth scheme, linearized Crank-Nicolson’s scheme and extrapolated Gear’s scheme, in solving high physical parameters MHD problems.  相似文献   

8.
In this article, a finite element scheme based on the Newton's method is proposed to approximate the solution of a nonlocal coupled system of parabolic problem. The Crank‐Nicolson method is used for time discretization. Well‐posedness of the problem is discussed at continuous and discrete levels. We derive a priori error estimates for both semidiscrete and fully discrete formulations. Results based on usual finite element method are provided to confirm the theoretical estimates.  相似文献   

9.
An orthogonal spline collocation (OSC) spatial discretization is proposed for the solution of the fully coupled stream function‐vorticity formulation of the Navier–Stokes equations in two dimensions. For the time‐stepping, a three‐level leapfrog scheme is employed. This method is algebraically linear, and, at each time step, gives rise to a system of linear equations of the form arising in the OSC approximation of the biharmonic Dirichlet problem and can be solved by a fast direct method. Error estimates in the Hl–norm in space, l = 1,2, are derived for the semi‐discrete method and the fully‐discrete leapfrog scheme which is also shown to be second order accurate in time. Numerical results are presented which confirm the theoretical analysis and exhibit superconvergence phenomena, which provide superconvergent approximations to the components of the velocity. © John Wiley & Sons, Inc. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

10.
We propose a spectral collocation method for the numerical solution of the time‐dependent Schrödinger equation, where the newly developed nonpolynomial functions in a previous study are used as basis functions. Equipped with the new basis functions, various boundary conditions can be imposed exactly. The preferable semi‐implicit time marching schemes are employed for temporal discretization. Moreover, the new basis functions build in a free parameter λ intrinsically, which can be chosen properly so that the semi‐implicit scheme collapses to an explicit scheme. The method is further applied to linear Schrödinger equation set in unbounded domain. The transparent boundary conditions are constructed for time semidiscrete scheme of the linear Schrödinger equation. We employ spectral collocation method using the new basis functions for the spatial discretization, which allows for the exact imposition of the transparent boundary conditions. Comprehensive numerical tests both in bounded and unbounded domain are performed to demonstrate the attractive features of the proposed method.  相似文献   

11.
A Discontinuous Galerkin method with interior penalties is presented for nonlinear Sobolev equations. A semi‐discrete and a family of fully‐discrete time approximate schemes are formulated. These schemes are symmetric. Hp‐version error estimates are analyzed for these schemes. For the semi‐discrete time scheme a priori L(H1) error estimate is derived and similarly, l(H1) and l2(H1) for the fully‐discrete time schemes. These results indicate that spatial rates in H1 and time truncation errors in L2 are optimal. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

12.
A family of elliptic optimal control problems with pointwise constraints on control and state is considered. We are interested in approximation of the optimal solution by a finite element discretization of the involved partial differential equations. The discretization error for a problem with mixed state constraints is estimated in the semidiscrete case and in the fully discrete scheme with the convergence of order h|ln h| and h 1/2, respectively. However, considering the unregularized continuous problem and the discrete regularized version, and choosing suitable relation between the regularization parameter and the mesh size, i.e., εh 2, a convergence order arbitrary close to 1, i.e., h 1−β is obtained. Therefore, we benefit from tuning the involved parameters.  相似文献   

13.
This paper gives the detailed numerical analysis of mixed finite element method for fractional Navier-Stokes equations.The proposed method is based on the mixed finite element method in space and a finite difference scheme in time.The stability analyses of semi-discretization scheme and fully discrete scheme are discussed in detail.Furthermore,We give the convergence analysis for both semidiscrete and flly discrete schemes and then prove that the numerical solution converges the exact one with order O(h2+k),where h and k:respectively denote the space step size and the time step size.Finally,numerical examples are presented to demonstrate the effectiveness of our numerical methods.  相似文献   

14.
In this article, the existence of a global strong solution for all finite time is derived for the Kirchhoff's model of parabolic type. Based on exponential weight function, some new regularity results which reflect the exponential decay property are obtained for the exact solution. For the related dynamics, the existence of a global attractor is shown to hold for the problem when the non-homogeneous forcing function is either independent of time or in L(L2). With the finite element Galerkin method applied in spatial direction keeping time variable continuous, a semidiscrete scheme is analyzed, and it is also established that the semidiscrete system has a global discrete attractor. Optimal error estimates in L(H1) norm are derived which are valid uniformly in time. Further, based on a backward Euler method, a completely discrete scheme is analyzed and error estimates are derived. It is also further, observed that in cases where f = 0 or f = O(e0t) with γ0 > 0, the discrete solutions and error estimates decay exponentially in time. Finally, some numerical experiments are discussed which confirm our theoretical findings.  相似文献   

15.
Mixed finite element methods are applied to a fourth order reaction diffusion equation with different types of boundary conditions. Some a priori bounds are established with the help of Lyapunov functional. The semidiscrete schemes are derived using C0‐piecewise linear finite elements in spatial direction and error estimates are obtained. The semidiscrete problem is then discretized in the temporal direction using backward Euler method and the wellposedness of the completely discrete scheme is discussed. Finally, a priori error estimates are established. While deriving a priori error estimates, Gronwall's lemma is applied and the constants involved in the error bounds do not depend exponentially on $\frac{1}{\gamma}$, where γ is a parameter appeared in the fourth order derivative. © 2011Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

16.
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.  相似文献   

17.
In this article, based on a second-order backward difference method, a completely discrete scheme is discussed for a Kelvin-Voigt viscoelastic fluid flow model with nonzero forcing function, which is either independent of time or in L (L 2). After deriving some a priori bounds for the solution of a semidiscrete Galerkin finite element scheme, a second-order backward difference method is applied for temporal discretization. Then, a priori estimates in Dirichlet norm are derived, which are valid uniformly in time using a combination of discrete Gronwall’s lemma and Stolz-Cesaro’s classical result on sequences. Moreover, an existence of a discrete global attractor for the discrete problem is established. Further, optimal a priori error estimates are obtained, whose bounds may depend exponentially in time. Under uniqueness condition, these estimates are shown to be uniform in time. Finally, several numerical experiments are conducted to confirm our theoretical findings.  相似文献   

18.
We first apply a first order splitting to a semilinear reaction-diffusion equation and then discretize the resulting system by anH 1-Galerkin mixed finite element method in space. This semidiscrete method yields a system of differential algebraic equations (DAEs) ofindex one. Apriori error estimates for semidiscrete scheme are derived for both differential as well as algebraic components. For fully discretization, an implicit Runge-Kutta (IRK) methods is applied to the temporal direction and the error estimates are discussed for both components. Finally, we conclude the paper with a numerical example.  相似文献   

19.
Based on two-grid discretizations, some local and parallel finite element algorithms for the d-dimensional (d = 2,3) transient Stokes equations are proposed and analyzed. Both semi- and fully discrete schemes are considered. With backward Euler scheme for the temporal discretization, the basic idea of the fully discrete finite element algorithms is to approximate the generalized Stokes equations using a coarse grid on the entire domain, then correct the resulted residue using a finer grid on overlapped subdomains by some local and parallel procedures at each time step. By the technical tool of local a priori estimate for the fully discrete finite element solution, errors of the corresponding solutions from these algorithms are estimated. Some numerical results are also given which show that the algorithms are highly efficient.  相似文献   

20.
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号