首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through utilizing the flexible bis(triazole) ligand 1,3‐bis(1,2,4‐triazol‐1‐y1)propane (btp), the new Keggin POM‐templated compound, [Cd2(H2O)2(btp)4(SiMo12O40)] · 2H2O ( 1 ), was synthesized under hydrothermal conditions. It was characterized by single‐crystal X‐ray diffraction, elemental analysis, IR spectroscopy, thermogravimetric analysis, photoluminescence spectroscopy, and cyclic voltammetry. In compound 1 , the [SiMo12O40]4– polyanions serving as template induce the Cd–bis(triazole) coordination polymer to construct a ladder‐like chain. In the 1D chain, two btp ligands act as “middle rails”. The template polyanions insert into the grids of the 1D chain. Furthermore, these chains can construct a 3D supramolecular structure through hydrogen bondings.  相似文献   

2.
A series of silver(I) supramolecular complexes, namely, {[Ag(L24)](NO3)}n ( 1 ), [Ag2(L24)(NO2)2]n ( 2 ), and {[Ag1.25(L24)(DMF)](PF6)1.25}n ( 3 ) were prepared by the reactions of 1‐(2‐pyridyl)‐2‐(4‐pyridyl)‐1,2,4‐triazole (L24) and silver(I) salts with different anions (AgNO3, AgNO2, AgPF6). Single‐crystal X‐ray diffraction indicates that 1 – 3 display diverse supramolecular networks. The structure of dinuclear complex 1 is composed of a six‐membered Ag2N4 ring with the Ag ··· Ag distance of 4.4137(3) Å. In complex 2 , the adjacent AgI centers are interlinked by L24 ligands into a 1D chain, the adjacent of which are further extended by the bridged nitrites to construct a 2D coordination architecture. Complex 3 shows a 3D (3,4)‐connected framework, which is generated by the linkage of L24 ligands. All complexes were characterized by IR spectra, elemental analysis, and powder X‐ray diffraction. Notably, a structural comparison of the complexes demonstrates that their structures are predominated by the nature of anions. Additionally, 1 and 2 show efficient dichromate (Cr2O72–) capture in water system, which can be ascribed to the anion‐exchange.  相似文献   

3.
A cadmium chiral coordination polymer, formulated as [Cd(R‐cna)]n ( 1 ‐D) was constructed under hydrothermal method. Single‐crystal X‐ray diffraction analysis indicated that 1 ‐D exhibited a 2D layered structure with a point symbol of (47 · 63). 1 ‐D was further characterized by infrared spectra, powder X‐ray diffraction (PXRD), elemental analysis, thermogravimetric analysis (TGA), and circular dichroism spectra (CD). The second‐harmonic generation (SHG) property was investigated. It was also found that the luminescence of 1 ‐D can be quenched by iron ions and trinitrotoluene, indicating its potential application as luminescence sensing material.  相似文献   

4.
Assembly of bidentate ligand 1‐(1‐imidazolyl)‐4‐(imidazol‐1‐ylmethyl)benzene (IIMB) with varied metal salts of ZnII, CdII and PbII provide three new complexes, [Zn(IIMB)2](ClO4)2·2H2O ( 1 ), [Cd(IIMB)2(SCN)2] ( 2 ) and [Pb(IIMB)2(SCN)](SCN) ( 3 ). Single crystal X‐ray diffraction studies revealed that complexes 1 and 2 display a similar one‐dimensional double stranded chain structure, while complex 3 is a slight distorted rhombohedral grid network with (4,4) topology. The results indicate that the coordination geometry of the metal ion and the counter anion have great impact on the structure of the complexes. In addition, the photoluminescence properties of ligand IIMB and complexes 1 – 3 were studied in the solid state at room temperature.  相似文献   

5.
Two cadmium(II) and two zinc(II) coordination complexes with diverse structural motifs, [Cd2(HL)I3H2O] · H2O ( 1 ), [Cd2(H2L)2(H2O)4] · 2SO4 · 14H2O ( 2 ), [Zn3(L′)2(H2O)6] · 4H2O · 2(NO3) ( 3 ), and [Zn3L'2(H2O)2Cl2] · H2O ( 4 ) [H2L = 1,1‐bis(5‐(pyrid‐2‐yl)‐1,2,4‐triazol‐3‐yl)methane; H2L′ = 1,1‐bis(5‐(pyrid‐2‐yl)‐1,2,4‐triazol‐3‐yl)methanone] were synthesized through a hydrothermal method. These coordination complexes were characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction (PXRD), FT‐IR spectroscopy, and photo‐luminescent experiments. Single crystal structural analysis revealed that 1 – 4 belong to polynuclear coordination compounds. PXRD analysis of 1 – 4 unambiguously confirmed the purity of the as‐synthesized coordination compounds. It is the first time to synthesize coordination compounds based on H2L′, which reacted from the original material H2L through in‐situ hydrothermal conditions. In addition, photo‐luminescent experiments revealed that 1 – 4 have real‐time sensing effects for benzaldehyde through fluorescence quenching. For 1 – 4 , the photo‐luminescent quenching effect for benzaldehyde was also compared and the coordination complexes 3 and 4 based on H2L′ have higher photo‐luminescent quenching effect than compounds 1 and 2 .  相似文献   

6.
New 4‐aryl‐5‐(1‐phenyl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,2,4‐triazol‐3‐thiones 3 have been synthesized by the intramolecular cyclization of 4‐aryl‐1‐(1‐phenyl‐5‐methyl‐1,2,4‐triazol‐4‐formyl)thiosemicarbazides 2 with an 8% NaOH solution, and then 3 reacted with ω‐bromo‐ω‐(1H‐1,2,4‐triazol‐1‐yl)acetophenone to afford ω‐[4‐aryl‐5‐(1‐phenyl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,2,4‐triazol‐3‐thio]‐ω‐(1H‐1,2,4‐triazol‐1‐yl)‐acetophenones 4 . The preliminary biological test showed that the representative compounds possess some anti fungal activities.  相似文献   

7.
The reaction of 4‐amino‐5‐methyl‐1, 2, 4‐triazol‐3(2H)‐thione (HAMTT, 1 ) with cadmium(II) acetate in ethanol leads to [Cd(η2‐AMTT)2(H2O)2] ( 2 ); the reaction of 2 with nitric acid in ethanol produces the single‐crystals of [Cd(η2‐HAMTT)2(H2O)2](NO3)2 ( 3 ). 2 and 3 have been characterized by IR, Raman, 1H NMR spectroscopy and elemental analyses; furthermore, 3 has been determined by single‐crystal X‐ray diffraction studies. 3 crystallizes in the space group Pbcn, orthorhombic with the lattice dimensions at —80 °C; a = 1604.2(1), b = 895.6(1), c = 1266.5(3) pm, Z = 4, R1= 0.0276, wR2= 0.0722.  相似文献   

8.
Fourteen novel arylaldehyde (arylketone)‐(4‐substituted phenyl‐5‐substituted phenoxy‐methyl‐4H‐1,2,4‐triazole‐3‐yl)‐thiol acetyl hydrazone derivatives ( 5a‐5g, 6a‐6g ) were synthesized by 4‐substituted phenyl‐5‐substituted phenoxy‐methyl‐1,2,4‐triazole‐3‐thione as starting material according to substructure link principle, followed by thioetherification, hydrazide hydrazone reaction. The structures of these compounds were confirmed by IR, 1H NMR and elemental analysis. Crystal structure of compounds 1b and 6d were determined by the X‐ray diffraction.  相似文献   

9.
The synthesis of some new S‐nucleosides of 5‐(4‐pyridyl)‐4‐aryl‐4H‐1,2,4‐triazole‐3‐thiols ( 4a‐n ) is described. Direct glycosylation of ( 4a‐n ) with tetra‐O‐acetyl‐α‐D‐glucopyranosyl bromide in the presence of potassium hydroxide followed by deacetylation using dry ammonia in methanol gave the corresponding 3‐S‐(ñ‐D‐glucopyranosyl)‐5‐(4‐pyridyl)‐4‐aryl‐4H‐1,2,4‐triazoles ( 6a‐n ) in good yields. All the compounds were fully characterized by means of 1HNMR, 13C NMR spectra and elemental analyses. To assist in the interpretation of the spectroscopic data, the crystal structure of 3‐S‐(2′,3′,4′,6′‐tetra‐O‐acetyl‐β‐D‐glucopyranosyl)‐5‐(4‐pyridyl)‐4‐phenyl‐4H‐1,2,4‐triazole ( 5a ) was determined by X‐ray diffraction.  相似文献   

10.
Three multi‐dentate 1, 2,4‐triazole derivative ligands containing different 4‐substituted groups, namely N‐1, 2,4‐triazol‐4‐yl(pyridin‐3‐yl)methylenimine (L1), N‐1, 2,4‐triazol‐ 4‐yl(pyridin‐4‐yl)methylenimine (L2), and 4‐(2‐pyridine)‐1, 2,4‐triazole (L3) were used to isolate five iron(II) and zinc(II) coordination frameworks, [Zn(μ2‐L1)Cl2] ( 1 ), [Zn(μ2‐L2)Br2] ( 2 ), [Fe(L1)2(NCS)2(H2O)2] ( 3 ), [Fe(L3)2(dca)2(H2O)2] ( 4 ), and [Fe(L3)22‐dca)] ( 5 ) (dca = dicyanamide anion). When different zinc(II) salts were used to react with L1 and L2 under solvothermal conditions, two one‐dimensional (1D) zinc(II) coordination frameworks 1 and 2 containing four‐coordinate central zinc(II) atoms were isolated. 1 is a 3D achiral supra‐molecular framework, whereas 2 is a 3D chiral supra‐molecular framework containing helical chains on a 21 axis. 3 is a mono‐nuclear iron(II) coordination framework containing six‐coordinate central FeII atoms. When L3 was employed, mono‐nuclear iron(II) framework 4 and 1D iron(II) chain 5 could be isolated when different amounts of Nadca were introduced into the reaction system. Variable‐temperature magnetic susceptibility data of 3 – 5 were recorded in the 2–300 K temperature range indicating weak anti‐ferromagnetic interactions. The solid‐state luminescent properties of coordination polymers 1 and 2 were also investigated at room temperature.  相似文献   

11.
Three coordination polymers, namely {[Cu(5‐nipa)(L22)](H2O)2}n ( 1 ), [Zn(5‐nipa)(L22)(H2O)]n ( 2 ), and {[Cd2(5‐nipa)2(L22)(H2O)3](H2O)3.6}n ( 3 ), were prepared under similar synthetic method based on 1,2‐(2‐pyridyl)‐1,2,4‐triazole (L22) and ancillary ligand 5‐nitro‐isophthalic acid (5‐H2nipa) with CuII, ZnII, and CdII perchlorate, respectively. All the complexes were characterized by IR spectroscopy, elemental analysis, and powder X‐ray diffraction (PXRD) patterns. Single‐crystal X‐ray diffraction indicates that complexes 1 and 2 show similar 1D chain structures, whereas complex 3 exhibits the 2D coordination network with hcb topology. The central metal atoms show distinct coordination arrangements ranging from distorted square‐pyramid for CuII in 1 , octahedron for ZnII in 2 , to pentagonal‐bipyramid for CdII in 3 . The L22 ligand adopts the same (η32) coordination fashion in complexes 1 – 3 , while the carboxyl groups of co‐ligand 5‐nipa2– adopt monodentate fashion in 1 and 2 and bidentate chelating mode in 3 . These results indicate that the choice of metal ions exerts a significant influence on governing the target complexes. Furthermore, thermal stabilities of complexes 1 – 3 and photoluminescent properties of 2 and 3 were also studied in the solid state.  相似文献   

12.
The cadmium(II) 4‐sulfobenzoate complex with 4,4′‐bipyridine, {[Cd2(4,4′‐bipy)4(4‐sb)2(H2O)3] · 4H2O}n, has been synthesized and characterized by elemental analysis, IR, DTA‐TG, fluorescence analysis, powder X‐ray analysis, and single‐crystal X‐ray structural determination. Structural analysis showed that the complex contains two Cd atoms in an unsymmetrical unit. The Cd1 atom displays a seven‐coordinated geometry, which is a capped anti‐trigonal prismatic structure, whereas the Cd2 atom has an octahedral coordination. The 4,4′‐bipyridine ligands in the complex have three coordination behaviors, i.e., monodentate, dimeric linker, and polymeric bridge, which is the first example showing three coordinative functions for 4,4′‐bipyridine ligands in one complex. Moreover, three coordinative functions of 4,4′‐bipyridine ligands in this polymer lead to abundant weak interactions and novel fluorescent properties, which is benefit for design and preparation of functional materials in specific usage.  相似文献   

13.
A series of novel N‐aryl‐4‐(tert‐butyl)‐5‐(1H‐1,2,4‐triazol‐1‐yl)thiazol‐2‐amines synthesized in a green way. H2O2‐NaBr Brominating circulatory system was used in the synthesis of the key intermediate in a mild condition. All of the target compounds were confirmed by 1H NMR and elemental analysis and tested for their cytotoxicity against two different human cancer cell lines. The cytotoxicity assay revealed that some of the title compounds showed moderate to strong cytotoxic activities. Compound 2i was the most potent compound with the IC50 values of 9 μM against Hela cells and 15 μM against Bel–7402 cells, respectively.  相似文献   

14.
Hydrothermal reactions of Cd(OAc)2 · 2H2O with 1,2‐naphthalic anhydride in the absence/presence of different rigid/flexible bis(pyridyl) co‐ligands, produce three distinct coordination polymers, namely [Cd(ndc)]n ( 1 ), {[Cd5(ndc)4(bpp)2(OH)2](H2O)4}n ( 2 ), and [Cd5(ndc)4(bpy)2(OH)2]n ( 3 ) [ndc = 1,2‐naphthalenedicarboxylate, bpp = 1,3‐bis(4‐pyridyl)propane, and bpy = 4,4′‐bipyridine]. Complex 1 contains dinuclear [Cd2O2] clusters as secondary building units (SBUs) and shows a two‐dimensional (2D) kgd network. Complexes 2 and 3 possess one‐dimensional (1D) chains based on pentanuclear [Cd53‐OH)2(COO)2] units as SBUs, which are further extended to afford 2D sql sheet via flexible bpp in 2 and three‐dimensional (3D) pcu network via rigid bpy in 3 , respectively. The structural diversities indicate that the bis(pyridyl) co‐ligands with different flexibility play a key role on the formation of the final supramolecular structures. The complexes were characterized by X‐ray crystallographic, IR, elemental, thermal stability, and powder X‐ray diffraction analyses. In addition, the photoluminescent properties in solid state were also investigated.  相似文献   

15.
Eighteen novel 2‐(1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,3,4‐oxadiazole derivatives and two acylhydrazone intermediate compounds were synthesized by various pathways starting from 1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐formhydrazide ( 1 ). All products were identified by spectroscopic analysis, and 2‐(1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐5‐benzalthio‐1,3,4‐oxadiazole was further validated by X‐ray crystallography. Results from primary antibacterial activity tests indicated that most of the compounds were effective against E. coli, P. aeruginosa, B. subtilis and S. aureus.  相似文献   

16.
The ligand [1,2‐bis(4‐pyridinecarboxamido)ethane] (L) and the coordination polymer |[Cu(L)2(H2O)]‐(NO3)2·6H2O|·(1) haw been synthesized and characterized by ER and 1H NMR spectra. Their molecular structures and the packing of 1 have been determined by single‐crystal X‐ray diffraction analysis. The Cu(n) in 1 is bridged by two ligands forming an infinite one‐dimensional chain like structure and L in 1 adopts a different conformation from its free state. 1 belongs to monoclinic, space group P21/n, a = 1.2896(3) nm, b = 1.2552(8) nm, c = 2.2903(19) nm, β = 93.04(5)°, Z = 4, V = 3.702(4) nm3. The TG and DTG experiments showed that the uncoordinated H2O can be removed at low temperature by heating, and it does not decompose until 250 °C.  相似文献   

17.
The reaction of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT, 1 ) with 4‐methoxy benzaldehyde and 3‐methoxybenzaldehyde in methanol led to the iminic derivatives 4‐(4‐methoxybenzylideneamino)‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)thione ( 2 , L1) and 4‐(3‐methoxybenzylideneamino)‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione ( 3 , L2). The reaction of the latter with [(PPh3)2CuCl] in methanol solution gave the first CuI complex of 3 , [(PPh3)2CuCl(L2)] ( 4 ) and in chloroform solution the complex [(PPh3)2CuCl(L2)]·2CHCl3 ( 5 ). All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for 2 at ?80 °C: space group P21/c with a = 1351.3(3), b = 399.4(1), c = 2225.2(5) pm, β = 96.50(2)°, Z = 4, R1 = 0.0667, for 3 at ?80 °C: space group R3c with a = b = 3020.4(2), c = 708.2(1) pm, Z = 18, R1 = 0.0435, for 4 at ?80 °C: space group P21/c with a = 1427.8(1), b = 1129.0(1), c = 2622.8(2) pm, β = 97.19(1)°, Z = 4, R1 = 0.0517 and for 5 at ?80 °C: space group with a = 1280.5(1), b = 1316.1(1), c = 1731.4(1) pm, α = 78.14(1)°, β = 86.06(1)°, γ = 64.69(1)°, Z = 2, R1 = 0.0525.  相似文献   

18.
The reactions of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT, L1 ) with 2‐thiophen carbaldehyde, salicylaldehyde and 2‐nitrobenzaldehyde in methanol led to the corresponding Schiff‐bases ( L1a‐c ). The reaction of L1 with [(PPh3)2Cu]NO3 in ethanol gave the ionic complex [(PPh3)2Cu(L1)]NO3·EtOH ( 2 ) All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for L1a at 20 °C: space group P21/n with a = 439.6(2), b = 2074.0(9), c = 1112.8(4) pm, β = 93.51(3)°, Z = 4, R1 = 0.0406, L1b at ?80 °C: space group P21/n with a = 1268.9(2), b = 739.3(1), c = 1272.5(1) pm, β = 117.97(1)°, Z = 4, R1 = 0.0361, L1c at ?80 °C: space group P21/n with a = 847.8(1), b = 1502.9(2), c = 981.5(2) pm, β = 110.34(1)°, Z = 4, R1 = 0.0376 and for 2 at ?80 °C: space group with a = 1247.8(1), b = 1270.3(1), c = 1387.5(1) pm, α = 84.32(1)°, β = 84.71(1)°, γ = 63.12(1)°, Z = 2, R1 = 0.0539.  相似文献   

19.
A novel one‐dimensional coordination polymer, Catena‐poly [bis(4‐cyano‐pyridyl) copper(II)‐di‐thiocyanate], 1 [CuII‐(cypy)2N.S‐SCN)2] (cypy = 4‐cyano‐pyridyl), was synthesized in a solution reaction of Cu(NO3)2·3H2O, 4‐cyano‐pyridine and KSCN in mole ratio of 1:2:2 at room temperature. Its crystal structure was determined by single‐crystal X‐ray diffraction. The crystal belongs to monoclinic crystal system, space group P21/c with cell parameters a = 1.0719(2), b = 1.8441(4), c =0.9144(2) nm, β = 110.49(3)° and Z = 4. A full‐matrix least‐squares refinement gave R1 = 0. 0393 and wR2= 0.0916 for 1554 reflections having 1 >2σ(I). The crystal is thermally stable up to approximately 170 °C.  相似文献   

20.
Some new (3,5‐aryl/methyl‐1H‐pyrazol‐1‐yl)‐(5‐arylamino‐2H‐1,2,3‐triazol‐4‐yl)methanones were synthesized and characterized by 1HNMR, 13C NMR, MS, IR spectra data and elemental analyses or high resolution mass spectra (HRMS). During the procedure, Dimroth rearrangement was used in this synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号