首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The independence number of a hypergraph H is the size of a largest set of vertices containing no edge of H. In this paper, we prove that if Hn is an n‐vertex ‐uniform hypergraph in which every r‐element set is contained in at most d edges, where , then where satisfies as . The value of cr improves and generalizes several earlier results that all use a theorem of Ajtai, Komlós, Pintz, Spencer and Szemerédi (J Comb Theory Ser A 32 (1982), 321–335). Our relatively short proof extends a method due to Shearer (Random Struct Algorithms 7 (1995), 269–271) and Alon (Random Struct Algorithms 9 (1996), 271–278). The above statement is close to best possible, in the sense that for each and all values of , there are infinitely many Hn such that where depends only on r. In addition, for many values of d we show as , so the result is almost sharp for large r. We give an application to hypergraph Ramsey numbers involving independent neighborhoods.Copyright © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 44, 224‐239, 2014  相似文献   

3.
Erdős and Moser raised the question of determining the maximum number of maximal cliques or, equivalently, the maximum number of maximal independent sets in a graph on vertices. Since then there has been a lot of research along these lines. A -dominating independent set is an independent set such that every vertex not contained in has at least neighbors in . Let denote the maximum number of -dominating independent sets in a graph on vertices, and let . Nagy initiated the study of . In this study, we disprove a conjecture of Nagy using a graph product construction and prove that for any even we have We also prove that for any we have improving the upper bound of Nagy.  相似文献   

4.
We investigate the relationship between projectivity and the structure of maximal independent sets in powers of circular graphs, Kneser graphs and truncated simplices. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 162–171, 2002  相似文献   

5.
We analyse the mixing time of Markov chains using path coupling with stopping times. We apply this approach to two hypergraph problems. We show that the Glauber dynamics for independent sets in a hypergraph mixes rapidly as long as the maximum degree Δ of a vertex and the minimum size m of an edge satisfy m ≥ 2Δ + 1. We also show that the Glauber dynamics for proper q‐colorings of a hypergraph mixes rapidly if m ≥ 4 and q > Δ, and if m = 3 and q ≥ 1.65Δ. We give related results on the hardness of exact and approximate counting for both problems. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

6.
We consider a natural parallel version of the classical greedy algorithm for finding a maximal independent set in a graph. This version was studied in Coppersmith, Raghavan, and Tompa and they conjecture there that its expected running time on random graphs of arbitrary edge density of O (log n). We prove that conjecture.  相似文献   

7.
We study the mixing time of the Glauber dynamics for general spin systems on the regular tree, including the Ising model, the hard‐core model (independent sets), and the antiferromagnetic Potts model at zero temperature (colorings). We generalize a framework, developed in our recent paper (Martinelli, Sinclair, and Weitz, Tech. Report UCB//CSD‐03‐1256, Dept. of EECS, UC Berkeley, July 2003) in the context of the Ising model, for establishing mixing time O(nlog n), which ties this property closely to phase transitions in the underlying model. We use this framework to obtain rapid mixing results for several models over a significantly wider range of parameter values than previously known, including situations in which the mixing time is strongly dependent on the boundary condition. We also discuss applications of our framework to reconstruction problems on trees. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

8.
A caterpillar graph is a tree in which the removal of all pendant vertices results in a chordless path. In this work, we determine the number of maximal independent sets (mis) in caterpillar graphs. For a general graph, this problem is #Pcomplete. We provide a polynomial time algorithm to generate the whole family of mis in a caterpillar graph. We also characterize the independent graph (intersection graph of mis) and the clique graph (intersection graph of cliques) of complete caterpillar graphs.  相似文献   

9.
K.M. Koh  F.M. Dong 《Discrete Mathematics》2008,308(17):3761-3769
In this paper, we determine the maximum number of maximal independent sets in a unicyclic connected graph. We also find a class of graphs achieving this maximum value.  相似文献   

10.
Chung and Graham began the systematic study of k‐uniform hypergraph quasirandom properties soon after the foundational results of Thomason and Chung‐Graham‐Wilson on quasirandom graphs. One feature that became apparent in the early work on k‐uniform hypergraph quasirandomness is that properties that are equivalent for graphs are not equivalent for hypergraphs, and thus hypergraphs enjoy a variety of inequivalent quasirandom properties. In the past two decades, there has been an intensive study of these disparate notions of quasirandomness for hypergraphs, and an open problem that has emerged is to determine the relationship between them. Our main result is to determine the poset of implications between these quasirandom properties. This answers a recent question of Chung and continues a project begun by Chung and Graham in their first paper on hypergraph quasirandomness in the early 1990's. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46,762–800, 2015  相似文献   

11.
若An 是X := {1, 2,..., n} 上的偶置换构成的交错群, En 是X 上的偶错位集, 则Cayley 图AΓn := Γ(An, En) 称为偶错位图. 令AΓnq 为q 个AΓn 的张量幂. 在本文中, 我们研究了AΓnq 的连通性、直径、独立数、团数、色数和最大独立集等性质. 利用AΓnq 最大独立集的结果, 我们完全确定了AΓnq 的自同构群的结构.  相似文献   

12.
The notion of recoverable value was advocated in the work of Feige, Immorlica, Mirrokni and Nazerzadeh (APPROX 2009) as a measure of quality for approximation algorithms. There, this concept was applied to facility location problems. In the current work we apply a similar framework to the maximum independent set problem (MIS). We say that an approximation algorithm has recoverable factor ρ, if for every graph it recovers an independent set of size at least where d(v) is the degree of vertex v, and I ranges over all independent sets in G. Hence, in a sense, from every vertex v in the maximum independent set the algorithm recovers a value of at least toward the solution. This quality measure is most effective in graphs in which the maximum independent set is composed of low degree vertices. A simple greedy algorithm achieves . We design a new randomized algorithm for MIS that ensures an expected recoverable factor of at least . In passing, we prove that approximating MIS in graphs with a given k‐coloring within a ratio larger than 2/ k is unique‐games hard. This rules out an alternative approach for obtaining . © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46, 142–159, 2015  相似文献   

13.
The paper stems from an attempt to investigate a somewhat mysterious phenomenon: conditions which suffice for the existence of a “large” set satisfying certain conditions (e.g., a large independent set in a graph) often suffice (or at least are conjectured to suffice) for the existence of a covering of the ground set by few sets satisfying these conditions (in the example of independent sets in a graph this means that the graph has small chromatic number). We consider two conjectures of this type, on coloring by sets which are “two-way independent”, in the sense of belonging to a matroid and at the same time being independent in a graph sharing its ground set with the matroid. We prove these conjectures for matroids of rank 2. We also consider dual conjectures, on packing bases of a matroid, which are independent in a given graph.  相似文献   

14.
We study two central problems of algorithmic graph theory: finding maximum and minimum maximal independent sets. Both problems are known to be NP-hard in general. Moreover, they remain NP-hard in many special classes of graphs. For instance, the problem of finding minimum maximal independent sets has been recently proven to be NP-hard in the class of so-called (1,2)-polar graphs. On the other hand, both problems can be solved in polynomial time for (1,1)-polar, also known as split graphs. In this paper, we address the question of distinguishing new classes of graphs admitting polynomial-time solutions for the two problems in question. To this end, we extend the hierarchy of (α,β)-polar graphs and study the computational complexity of the problems on polar graphs of special types.  相似文献   

15.
Entringer, Goddard, and Henning studied graphs in which every vertex belongs to both an (m + 1)‐clique and an independent (n + 1)‐set; they proved that there is such a graph of order p if and only if . We give an alternative and slightly easier proof of this fact, relating it to combinatorial matrix theory. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 173–175, 2000  相似文献   

16.
An independent set S of a graph G is said to be essential if S has a pair of vertices that are distance two apart in G. For SV(G) with S≠, let Δ(S)=max{dG(x)|xS}. We prove the following theorem. Let k2 and let G be a k-connected graph. Suppose that Δ(S)d for every essential independent set S of order k. Then G has a cycle of length at least min{|G|,2d}. This generalizes a result of Fan.  相似文献   

17.
18.
19.
We derive bounds on the size of an independent set based on eigenvalues. This generalizes a result due to Delsarte and Hoffman. We use this to obtain new bounds on the independence number of the Erdős–Rényi graphs. We investigate further properties of our bounds, and show how our results on the Erdős–Rényi graphs can be extended to other polarity graphs.  相似文献   

20.
A result of Balas and Yu (1989) states that the number of maximal independent sets of a graph G is at most p+1, where is the number of pairs of vertices in G at distance 2, and p is the cardinality of a maximum induced matching in G. In this paper, we give an analogue of this result for hypergraphs and, more generally, for subsets of vectors in the product of n lattices =1××n, where the notion of an induced matching in G is replaced by a certain binary tree each internal node of which is mapped into . We show that our bounds may be nearly sharp for arbitrarily large hypergraphs and lattices. As an application, we prove that the number of maximal infeasible vectors x=1××n for a system of polymatroid inequalities does not exceed max{Q,logt/c(2Q,)}, where is the number of minimal feasible vectors for the system, , , and c(,) is the unique positive root of the equation 2c(c/log–1)=1. This bound is nearly sharp for the Boolean case ={0,1}n, and it allows for the efficient generation of all minimal feasible sets to a given system of polymatroid inequalities with quasi-polynomially bounded right-hand sides . This research was supported by the National Science Foundation (Grant IIS-0118635), and by the Office of Naval Research (Grant N00014-92-J-1375). The second and third authors are also grateful for the partial support by DIMACS, the National Science Foundation's Center for Discrete Mathematics and Theoretical Computer Science.Mathematics Subject Classification (2000):20E28, 20G40, 20C20  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号