首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here on plasticized ion‐selective poly(vinyl chloride) membranes with increased biocompatibility by means of a copper(I)‐catalyzed azide‐alkyne cycloaddition (‘click chemistry’) on the surface of finished membranes. We aimed for increasing the hydrophilicity of the surface and the application of NO releasing molecules. Employing the first principle, sodium selective membranes based on azide‐substituted PVC were modified with different length poly(ethylene glycol) (PEG) chains. For the second, cysteine groups were used as a nitrous oxide releasing substance. Surface modification was confirmed by Electrochemical Impedance Spectroscopy (EIS). Potentiometric measurements in undiluted whole blood showed an increased sensor stability in comparison to unmodified PVC. Membrane surfaces after 18 h contact with blood were analyzed with Scanning Electron Microscopy (SEM) and revealed a reduced level of blood cell adsorption on membranes modified with tetraethylene glycol (TEG) and PEGs. In contrast, cysteine modified membranes did not exhibit improved fouling resistance, suggesting that nitric oxide release by itself is not a sufficiently efficient mechanism.  相似文献   

2.
A new DNA building block bearing a push–pull‐substituted diaryltetrazole linked to the 5‐position of 2′‐deoxyuridine through an aminopropynyl group was synthesized. The accordingly modified oligonucleotide allows postsynthetic labeling with a maleimide‐modified sulfo‐Cy3 dye, N‐methylmaleimide, and methylmethacrylate as dipolarophiles by irradiation at 365 nm (LED). The determined rate constant of (23±7) M ?1 s?1 is remarkably high with respect to other copper‐free bioorthogonal reactions and comparable with the copper‐catalyzed cycloaddition between azides and acetylenes.  相似文献   

3.
Eight isomorphous metal‐organic frameworks: [Ln2(TATAB)2(H2O)(DMA)6]·5H2O (Ln = Sm ( 1 ), Eu ( 2 ), Gd ( 3 ), Tb ( 4 ), Dy ( 5 ), Er ( 6 ), Tm ( 7 ), Yb ( 8 )); TATAB = 4,4′,4″‐s‐triazine‐1,3,5‐triyl‐p‐aminobenzoate, DMA = N,N‐dimethylacetamide), were synthesized by the self‐assembly of lanthanide ions, TATAB, DMA and H2O. Single‐crystal X‐ray crystallography reveals they are three dimensional frameworks with 2‐fold interpenetration. Solid‐state photoluminescence studies indicate ligand‐to‐metal energy transfer is more efficient for compounds 2 and 4 which exhibit intense characteristic lanthanide emissions at room temperature.  相似文献   

4.
5.
6.
The 2D CuII metal‐organic framework [Cu2(bptc)(H2O)4]n · 4nH2O ( 1 ) (H4bptc = biphenyl‐2,2′,4,4′‐tetracarboxylic acid) was hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction and magnetic measurements. In the structure, bptc4– serves as a twisted Π‐shaped organic building block to connect paddlewheel [Cu2(COO)4] dinuclear units and mononuclear units through 2‐/2′‐carboxylate and 4‐/4′‐carboxylate, respectively. According to the magnetic analysis using a dimer‐plus‐monomer model, strong antiferromagnetic coupling is operative within the dinuclear unit (J = –311 cm–1 based on H = –J S 1 S 2), and the compound behaves like a mononuclear molecule at low temperature.  相似文献   

7.
Solvothermal reaction of a semirigid tricarboxylic acid with Cu(NO3)2 · 3H2O gives rise to a robust microporous metal‐organic framework with the formula {[Cu2(OH)bcb](DMF)2(H2O)3}n ( 1 ) [H3bcb = 3,5‐bis((4′‐carboxylbenzyl)‐oxy)benzoic acid, DMF = N,N‐dimethylformamide]. Its structure was determined by single‐crystal X‐ray diffraction analysis and further characterized by elemental analysis, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. The efficient encapsulation of an anticancer drug 5‐fluorouracil (5‐Fu) on the desolvated 1 ( 1a ) was studied by both grand canonical Monte Carlo (GCMC) simulation and drug release experiments. In addition, in vitro anticancer activity of compounds 1 and 5‐Fu loaded 1a were also evaluated using MTT assay.  相似文献   

8.
“Click” chemistry represents one of the most powerful approaches for linking molecules in chemistry and materials science. Triggering this reaction by mechanical force would enable site‐ and stress‐specific “click” reactions—a hitherto unreported observation. We introduce the design and realization of a homogeneous Cu catalyst able to activate through mechanical force when attached to suitable polymer chains, acting as a lever to transmit the force to the central catalytic system. Activation of the subsequent copper‐catalyzed “click” reaction (CuAAC) is achieved either by ultrasonication or mechanical pressing of a polymeric material, using a fluorogenic dye to detect the activation of the catalyst. Based on an N‐heterocyclic copper(I) carbene with attached polymeric chains of different flexibility, the force is transmitted to the central catalyst, thereby activating a CuAAC in solution and in the solid state.  相似文献   

9.
10.
A new microporous metal organic frameworks Eu2(olz)3 · 7(DMF), based on olsalazine, has been successfully designed and synthesized. Eu‐olz has three‐dimensional structure with dinuclear rare earth cluster and drug molecule olsalazine as ligand, and features as low toxic MOF materials. The Eu‐olz exhibits weak fluorescent emission which can be ascribed to the luminescence of the organic ligand.  相似文献   

11.
The rise in global demand for crucial chemical compounds has driven immense research in the fundamental science of catalysis. Graphene and its derivatives (chemically modified graphene, CMGs) have recently emerged as a new class of heterogeneous catalyst that promises economically viable and greener routes to these compounds. Although CMGs possess unique catalytic properties, the actual active sites are often points of discussion. Current minimal understanding on the possible effects of metallic impurities on the electrocatalytic performances of these CMGs calls forth the need to raise awareness on possible metallic impurities misrepresenting the actual chemical catalytic performances of the CMGs. This Minireview highlights the latest advances in the application of CMGs as catalysts, with an emphasis on the possible effects of metallic impurities on CMG catalysis.  相似文献   

12.
A novel carboxyl‐bonded silica stationary phase was prepared by “thiol‐ene” click chemistry. The resultant Thiol‐Click‐COOH phase was evaluated under hydrophilic interaction liquid chromatography (HILIC) mobile phase conditions. A comparison of the chromatographic performance of Thiol‐Click‐COOH and pure silica columns was performed according to the retention behaviors of analytes and the charged state of the stationary phases. The results indicated that the newly developed Thiol‐Click‐COOH column has a higher surface charge and stronger hydrophilicity than the pure silica column. Furthermore, the chromatographic behaviors of five nucleosides on the Thiol‐Click‐COOH phase were investigated in detail. Finally, a good separation of 13 nucleosides and bases, and four water‐soluble vitamins was achieved.  相似文献   

13.
14.
A novel porous copper‐based metal‐organic framework {[Cu2(TTDA)2]*(DMA)7}n ( 1 ) (DMA = N,N‐dimethylacetamide) was designed and synthesized via the combination of a dual‐functional organic linker 5′‐(4‐(4H‐1,2,4‐triazol‐4‐yl)phenyl)‐[1,1′:3′,1′′‐terphenyl]‐4,4′′‐dicarboxylic acid (H2TTDA) and a dinuclear CuII paddle‐wheel cluster. This MOF is characterized by elemental analysis, powder X‐ray diffraction (PXRD), thermo gravimetric analysis (TGA), and single‐crystal X‐ray diffraction. The framework is constructed from two types of cages (octahedral and cuboctahedral cages) and exhibits two types of circular‐shaped channels of approximate size of 5.8 and 11.4 Å along the crystallographic c axis. The gas sorption experiments indicate that it possesses a large surface area (1687 m2 · g–1) and high CO2 adsorption capacities around room temperature (up to 172 cm3 · g–1 at 273 K and 124 cm3 · g–1 at 298 K).  相似文献   

15.
16.
We describe a facile, one‐pot, two‐step polymerization towards synthesizing block co‐polymers bearing reactive isocyanate functional groups. Reversible addition fragmentation chain transfer (RAFT) polymerization is used to mediate the co‐polymerization of isocyanate‐bearing monomers dimethyl meta‐isopropenyl benzyl isocyanate (TMI) and 2‐isocyanatoethyl methacrylate (ICEMA) with styrene and methyl methacrylate (MMA), respectively. ICEMA was incorporated into the polymer at a faster rate than TMI and its unhindered isocyanate group was found to be more reactive than the hindered isocyanate group of TMI. Both the TMI/styrene and the MMA/ICEMA systems maintain the reactivity of the isocyanate functionality, which was exploited by attaching representative hydroxyl‐bearing small and large molecules as well as solid substrates to the block co‐polymers. Thus, we demonstrate the versatility of the block co‐polymer system as a basis for forming branched polymers or as grafts for a solid substrate. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
18.
Strategies to compensate material fatigue are among the most challenging issues, being most prominently addressed by the use of nano‐ and microscaled fillers, or via new chemical concepts such as self‐healing materials. A capsule‐based self‐healing material is reported, where the adverse effect of reduced tensile strength due to the embedded capsules is counterbalanced by a graphene‐based filler, the latter additionally acting as a catalyst for the self‐healing reaction. The concept is based on “click”‐based chemistry, a universal methodology to efficiently link components at ambient reaction conditions, thus generating a “reactive glue” at the cracked site. A capsule‐based healing system via a graphene‐based Cu2O (TRGO‐Cu2O‐filler) is used, acting as both the catalytic species for crosslinking and the required reinforcement agent within the material, in turn compensating the reduction in tensile strength exerted by the embedded capsules. Room‐temperature self‐healing within 48 h is achieved, with the investigated specimen containing TRGO‐Cu2O demonstrating significantly faster self‐healing compared to homogeneous (Cu(PPh3)3F, Cu(PPh3)3Br), and heterogeneous (Cu/C) copper(I) catalysts.

  相似文献   


19.
《中国化学会会志》2018,65(6):743-749
A glassy carbon electrode (GCE) modified with a copper‐based metal‐organic framework (MOF) [HKUST‐1, HKUST‐1 = Cu3(BTC)2 (BTC = 1,3,5‐benzenetricarboxylicacid)] was developed as a highly sensitive and simple electrochemical sensor for the determination of dopamine (DA). The MOF was prepared by a hydrothermal process, and the morphology and crystal phase of the MOF were characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD), respectively. Meanwhile, the electrochemical performance was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the modified electrode showed excellent electrocatalytic activity and high selectivity toward DA. The linear response range was from 5.0 × 10−7 to 1.0 × 10−4 M and the detection limit was as low as 1.5 × 10−7 M. Moreover, the electrochemical sensor was used to detect DA in real samples with excellent results. MOF‐based sensors hold great promise for routine sensing applications in the field of electrochemical sensing.  相似文献   

20.
The resistance of metal–organic frameworks towards water is a very critical issue concerning their practical use. Recently, it was shown for microporous MOFs that the water stability could be increased by introducing hydrophobic pendant groups. Here, we demonstrate a remarkable stabilisation of the mesoporous MOF Al‐MIL‐101‐NH2 by postsynthetic modification with phenyl isocyanate. In this process 86 % of the amino groups were converted into phenylurea units. As a consequence, the long‐term stability of Al‐MIL‐101‐URPh in liquid water could be extended beyond a week. In water saturated atmospheres Al‐MIL‐101‐URPh decomposed at least 12‐times slower than the unfunctionalised analogue. To study the underlying processes both materials were characterised by Ar, N2 and H2O sorption measurements, powder X‐ray diffraction, thermogravimetric and chemical analysis as well as solid‐state NMR and IR spectroscopy. Postsynthetic modification decreased the BET equivalent surface area from 3363 to 1555 m2 g?1 for Al‐MIL‐101‐URPh and reduced the mean diameters of the mesopores by 0.6 nm without degrading the structure significantly and reducing thermal stability. In spite of similar water uptake capacities, the relative humidity‐dependent uptake of Al‐MIL‐101‐URPh is slowed and occurs at higher relative humidity values. In combination with 1H‐27Al D ‐HMQC NMR spectroscopy experiments this favours a shielding mechanism of the Al clusters by the pendant phenyl groups and rules out pore blocking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号