首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
p‐Cresol sulfate (pCS) and indoxyl sulfate (IS) are protein‐bound uremic toxins that accumulate in patients with chronic kidney disease (CKD). They are closely associated with the mortality rate of CKD and morbidity of cardiovascular disease. In the present study, we established a rapid method for determination of pCS and IS by HPLC‐MS/MS in serum samples from 205 CKD patients undergoing peritoneal dialysis. In brief, serum was extracted by acetonitrile and spiked with hydrochlorothiazide. The prepared sample was eluted through HPLC column (Agilent Zorbax SB‐C18, 3.5 μm, 2.1 × 100 mm) with a mobile phase of acetonitrile and 10 mm ammonium acetate solution (10:90, v/v) for subsequent detection of pCS and IS by MS/MS. The linearity ranged from 50 to 10,000 ng/mL for pCS (r > 0.99), and from 500 to 10,000 ng/mL for IS (r > 0.99). The lower limit of quantification was 50 ng/mL for pCS, and 500 ng/mL for IS. Relative standard deviation (RSD) of intra‐ and inter‐day precision was within ±15%. The results showed that pCS and IS levels were partially correlated with renal function in CKD patients, and IS was directly related to serum creatinine and estimated glomerular filtration rate.  相似文献   

2.
Dimethylacetamide (DMA) is a solvent used in the preparation of intravenous busulfan, an alkylating agent used in blood or marrow transplantation. DMA may contribute to hepatic toxicity, so it is important to monitor its clearance. The aim of this study was to develop an HPLC‐UV assay for measurement of DMA in human plasma. After precipitation of plasma proteins with acetonitrile followed by dilution (1:4) with water, the extract was injected onto the HPLC and detected at 195 nm. Separation was performed using a Cogent‐HPS 5 μm C18 column (250 × 4.6 mm) preceded by a Brownlee 7 μm RP18, pre‐column (1.5 cm × 3.2 mm). The mobile phase was 25 mm sodium phosphate buffer (pH 3), containing 2.5% (v /v) acetonitrile and 0.0005% (v /v) sodium‐octyl‐sulfonate. Using a flow rate of 1 mL/min, the retention times of DMA and the internal standard (IS), 2‐chloroacetamide, were 9.5 and 3.5 min, respectively. Peak area ratio (DMA:IS) was a linear function of concentration from 1 to 1000 μg/mL. There was excellent intraday precision (<5% for 5–700 μg/mL DMA), accuracy (<3% deviation from the true concentration) and recovery (74–98%). The limits of detection and quantification were 1 and 5 μg/mL, respectively. In eight children who received intravenous busulfan, DMA concentrations ranged from 110 to 438 μg/mL.  相似文献   

3.
Two new antimycobacterial dibenzo[b,f]oxepins, bauhinoxepins A (=3,3,5‐trimethylbenzo[b]pyrano[g][1]benzoxepin‐6,11‐diol; 1 ) and B (=6‐methoxy‐7‐methyl‐2‐(3‐methylbut‐2‐enyl)dibenzo[b,f]oxepine‐1,8‐diol; 2 ), were isolated from the roots of Bauhinia saccocalyx, and their structures were elucidated by analysis of spectroscopic data. Bauhinoxepins A and B exhibited antimycobacterial activities with respective minimum‐inhibitory concentrations (MIC) of 6.25 and 12.5 μg/ml. They were inactive (at 20 μg/ml) against the malarial parasite, and also inactive (at 20 μg/ml) towards the Vero, KB, and BC cell lines.  相似文献   

4.
Anacetrapib is a potent and selective CETP inhibitor and is undergoing phase III clinical trials for the treatment of dyslipidemia. A simple and sensitive high‐performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method for the quantification of anacetrapib in rat plasma was developed and validated using an easily purchasable compound, chlorpropamide, as an internal standard (IS). A minimal volume of rat plasma sample (20 μL) was prepared by a single‐step deproteinization procedure with 80 μL of acetonitrile. Chromatographic separation was performed using Kinetex C18 column with a gradient mobile phase consisting of water and acetonitrile containing 0.1% formic acid at a flow rate of 0.3 mL/min. Mass spectrometric detection was performed using selected reaction monitoring modes at the mass/charge transitions m/z 638 → 283 for anacetrapib and m/z 277 → 175 for IS. The assay was validated to demonstrate the selectivity, linearity, precision, accuracy, recovery, matrix effect and stability. The lower limit of quantification was 5 ng/mL. This LC‐MS/MS assay was successfully applied in the rat plasma protein binding and pharmacokinetic studies of anacetrapib. The fraction of unbound anacetrapib was determined to be low (ranging from 5.66 to 12.3%), and the absolute oral bioavailability of anacetrapib was 32.7%.  相似文献   

5.
6.
A sensitive, rapid and robust HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the quantification of sotalol in rat plasma. Plasma samples were precipitated with acetonitrile before analysis. The chromatographic separation was performed on an Atlantis hydrophilic interaction liquid chromatography Silica column (50 × 2.1 mm, 3 µm) with a gradient mobile phase of 10 mm NH4COOH (containing 0.2% of formic acid) as buffer A and acetonitrile as mobile phase B. Sotalol (m/z 273.2 → 255.1) and atenolol (the internal standard, IS, m/z 267.2 → 190.1) were monitored under positive ionization mode with 5500 QTRAP. Retention time of sotalol and the IS were 2.69 and 3.43 min, respectively. The linear range was 5–500 nm based on the analysis of 0.1 mL of plasma. The intrabatch precision ranged from 1.2 to 6.1%, and the inter‐batch precision was from 3.3 to 6.5%. The coefficient of variation of IS‐normalized matrix factor was 7.6%. Experiments for stability were performed and the analyte was sufficiently stable. A run time of 6 min for each injection made it possible to analyze a high throughput of plasma samples. The assay was successfully applied to the determination of sotalol in rat plasma after a micro‐dose oral administration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A selective, sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed and validated to determine metformin and glipizide simultaneously in human plasma using phenacetin as internal standard (IS). After one‐step protein precipitation of 200 μL plasma with methanol, metformin, glipizide and IS were separated on a Kromasil Phenyl column (4.6 × 150 mm, 5 µm) at 40°C with an isocratic mobile phase consisting of methanol–10 mmol/L ammonium acetate (75:25, v/v) at a flow rate of 0.35 mL/min. Electrospray ionization source was applied and operated in the positive mode. Multiple reaction monitoring using the precursor → product ion combinations of m/z 130 → m/z 71, m/z 446 → m/z 321 and m/z 180 → m/z 110 were used to quantify metformin, glipizide and IS, respectively. The linear calibration curves were obtained over the concentration ranges 4.10–656 ng/mL for metformin and 2.55–408 ng/mL for glipizide. The relative standard deviation of intra‐day and inter‐day precision was below 10% and the relative error of accuracy was between ?7.0 and 4.6%. The presented HPLC‐MS/MS method was proved to be suitable for the pharmacokinetic study of metformin hydrochloride and glipizide tablets in healthy volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Larotrectinib is a first-generation tropomyosin kinase inhibitor, approved for the treatment of solid tumors. In this paper, we present a validated dried blood spot (DBS) method for the quantitation of larotrectinib from mouse blood using HPLC–MS/MS, which was operated under multiple reaction monitoring mode. To the DBS disc cards, acidified methanol enriched with internal standard (IS; enasidenib) was added and extracted using tert-butyl methyl ether as an extraction solvent with sonication. Chromatographic separation of larotrectinib and the IS was achieved on an Atlantis dC18 column using 10 mm ammonium formate–acetonitrile (30:70, v/v) delivered at a flow-rate of 0.80 ml/min. Under these optimized conditions, the retention times of larotrectinib and the IS were ~0.93 and 1.37 min, respectively. The total run time was 2.50 min. Larotrectinib and the IS were analyzed using positive ion scan mode and parent–daughter mass to charge ion (m/z) transitions of 429.1 → 342.1 and 474.1 → 267.1, respectively, were used for the quantitation. The calibration range was 1.06–5,080 ng/ml. No matrix effect or carryover was observed. Hematocrit did not influence DBS larotrectinib concentrations. All of the validation parameters met the acceptance criteria. The applicability of the validated method was shown in a mouse pharmacokinetic study.  相似文献   

9.
In the present study a fast, sensitive and robust validated method to quantify chlorpheniramine in human plasma using brompheniramine as internal standard (IS) is described. The analyte and the IS were extracted from plasma by LLE (diethyl ether–dichloromethane, 80:20, v/v) and analyzed by HPLC‐ESI‐MS/MS. Chromatographic separation was performed using a gradient of methanol from 35 to 90% with 2.5 mm NH4OH on a Gemini Phenomenex C8 5 μm column (50 × 4.6 mm i.d.) in 5.0 min/run. The method fitted to a linear calibration curve (0.05–10 ng/mL, R > 0.9991). The precision (%CV) and accuracy ranged, respectively: intra‐batch from 1.5 to 6.8% and 99.1 to 106.6%, and inter‐batch from 2.4 to 9.0%, and 99.9 to 103.1%. The validated bioanalytical procedure was used to assess the comparative bioavailability in healthy volunteers of two dexchlorpheniramine 2.0 mg tablet formulations (test dexchlorpheniramine, Eurofarma, and reference Celestamine®, Schering‐Plough). The study was conducted using an open, randomized, two‐period crossover design with a 2 week washout interval. Since the 90% confidence interval for Cmax and AUC ratios were all within the 80–125% interval proposed by ANVISA and FDA, it was concluded that test and reference formulations are bioequivalent concerning the rate and the extent of absorption. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method has been developed and validated for the determination of gymnemagenin (GMG), a triterpene sapogenin from Gymnema sylvestre, in rat plasma using withaferin A as the internal standard (IS). Plasma samples were simply extracted using liquid–liquid extraction with tetra‐butyl methyl ether. Chromatographic separation was performed on Luna C18 column using gradient elution of water and methanol (with 0.1% formic acid and 0.3% ammonia) at a flow rate of 0.8 mL/min. GMG and IS were eluted at 4.64 and 4.36 min, ionized in negative and positive mode, respectively, and quantitatively estimated using multiple reaction monitoring (MRM) mode. Two MRM transitions were selected at m/z 505.70 → 455.5 and m/z 471.50 → 281.3 for GMG and IS, respectively. The assay was linear over the concentration range of 5.280–300.920 ng/mL. The mean plasma extraction recoveries for GMG and IS were found to be 80.92 ± 8.70 and 55.63 ± 0.76%, respectively. The method was successfully applied for the determination of pharmacokinetic parameters of GMG after oral administration of G. sylvestre extract. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
An LC–MS/MS method was developed and validated for the simultaneous quantification of edaravone and taurine in beagle plasma. The plasma sample was deproteinized using acetonitrile containing formic acid. Chromatographic separations were achieved on an Agilent Zorbax SB‐Aq (100 × 2.1 mm, 3.5 μm) column, with a gradient of water (containing 0.03% formic acid) and methanol as the mobile phase at a flow rate of 0.3 mL/min. The analyte detection was carried out in multiple reaction monitoring mode and the optimized precursor‐to‐product transitions of m/z [M+H]+ 175.1 → 133.0 (edaravone), m/z [M+H]+ 189.1 → 147.0 (3‐methyl‐1‐p‐tolyl‐5‐pyrazolone, internal standard, IS), m/z [M–H]? 124.1→80.0 (taurine), and m/z [M–H]? 172.0 → 80.0 (sulfanilic acid, IS) were employed to quantify edaravone, taurine, and their corresponding ISs, respectively. The LOD and the lower LOQ were 0.01 and 0.05 μg/mL for edaravone and 0.66 and 2 μg/mL for taurine, respectively. The calibration curves of these two analytes demonstrated good linearity (r > 0.99). All the validation data including the specificity, precision, recovery, and stability conformed to the acceptable requirements. This validated method has successfully been applied in the pharmacokinetic study of edaravone and taurine mixture in beagle dogs.  相似文献   

12.
In this study, a sensitive HPLC‐UV assay was developed and validated for the determination of LASSBio‐1736 in rat plasma with sodium diclofenac as internal standard (IS). Liquid–liquid extraction using acetonitrile was employed to extract LASSBio‐1736 and IS from 100 μL of plasma previously basified with NaOH 0.1 M. Chromatographic separation was carried on Waters Spherisorb®S5 ODS2 C18 column (150 × 4.6 mm, 5 μm) using an isocratic mobile phase composed by water with triethylamine 0.3% (pH 4), methanol and acetonitrile grade (45:15:40, v/v/v) at a flow rate of 1 mL/min. Both LASSBio‐1736 and IS were eluted at 4.2 and 5 min, respectively, with a total run time of 8 min only. The lower limit of quantification was 0.2 μg/mL and linearity between 0.2 and 4 μg/mL was obtained, with an R2 > 0.99. The accuracy of the method was >90.5%. The relative standard deviations intra and interday were <6.19 and <7.83%, respectively. The method showed the sensitivity, linearity, precision, accuracy and selectivity required to quantify LASSBio‐1736 in preclinical pharmacokinetic studies according to the criteria established by the US Food and Drug Administration and European Medicines Agency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A simple, selective and rapid HPLC‐MS/MS method was developed and validated for the determination of caderofloxacin in human plasma. Sparfloxacin was used as the internal standard (IS). After precipitation with methanol and dilution with the mobile phase, the samples were injected into the HPLC‐MS/MS system. The chromatographic separation was performed on a Zorbax XDB Eclipse C18 column (150 × 4.6 mm, 5 µm) with a mobile phase of ammonium acetate buffer (20 mm, pH 3.0)–methanol, 45:55 (v/v). The MS/MS analysis was done in positive mode. The multiple reaction monitoring transitions monitored were m/z 412.3 → 297.1 for caderofloxacin and m/z 393.2 → 292.2 for the IS. The calibration curve was linear over the range of 50.0–8000 ng/mL with an aliquot of 100 μL plasma. The precision of the assay was 2.0–9.4 and 6.6–11.5% for the intra‐ and inter‐run variability, respectively. The intra‐ and inter‐run accuracy (relative error) was 4.4–10.0 and ?1.2–4.0%. The total run time was 3.5 min. The assay was fully validated in accordance with the US Food and Drug Administration guidance. It was successfully applied to a pharmacokinetic study of caderofloxacin in healthy Chinese volunteers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A rapid LC‐MS/MS method for quantification of an enaminone analog, E121 in mouse plasma using E118 as an internal standard (IS) has been developed and validated. The analyte was analyzed on C18 column using a mobile phase of acetonitrile/methanol/ammonium acetate/formic acid (60:20:20:0.025, v/v/v/v) at a flow rate of 0.25 mL/min. Quantitation was achieved using ESI+ interface, employing MRM mode at m/z 308>262 and 222>194 for E121 and IS, respectively. The calibration standards were linear over a range of 0.10–20 μg/mL (r2>0.99) with an LLOQ of 0.1 μg/mL (RSD%; 11.4% and bias%; 9.5%). Intra‐ and inter‐run precision of E121 assay ranged from 3.7 to 10.9% with accuracy (bias) that varied between ?10.0 and 12.0%, demonstrating good precision and accuracy. Recoveries of E121 and the IS from plasma were above 80%. Stability of E121 in plasma showed that the analyte was stable under various conditions. The matrix effect study showed a lack of effect. The applicability of the developed method was demonstrated by measuring E121 in mouse plasma samples following intraperitoneal administration of various doses ranging from 10 to 100 mg/kg and this study demonstrates that E121 exhibits linear kinetics in the dose range studied.  相似文献   

15.
An HPLC method of high resolution has been developed and validated for the simultaneous determination of ten prominent flavonoid aglycones in plant materials using a fused‐core C18‐silica column (Ascentis® Express, 4.6 mm × 150 mm, 2.7 μm). The separation was accomplished with an acetonitrile‐tetrahydrofuran gradient elution at a flow rate of 1 mL/min and temperature of 30°C. UV spectrophotometric detection was employed at 370 nm for flavonols (quercetin [QU], myricetin [MY], isorhamnetin [IS], kaempferol [KA], sexangularetin [SX], and limocitrin [LM]) and 340 nm for flavones (apigenin [AP], acacetin [AC], chrysoeriol [CH], and luteolin [LU]). The high resolution of critical pairs QU/LU (10.50), QU/CH (3.40), AP/CH (2.51), SX/LM (2.30), and IS/KA (2.70) was achieved within 30.3 min. The observed column back pressure was less than 4300 psi, thus acceptable for conventional HPLC equipment. The method was sensitive enough having LODs of 0.115–0.525 ng and good linearity (r > 0.9999) over the test range. The precision values, expressed as RSD values, were <7.5%, and the accuracy was in the range of 95.3–100.2% for all analytes except MY (73.8%). The method was successfully employed for the determination of flavonoids in several medicinal plants, such as Ginkgo biloba, Betula pendula, and a variety of Sorbus species.  相似文献   

16.
A novel, rapid and sensitive liquid chromatography/quadrupole linear ion trap mass spectrometry [LC‐ESI‐(QqLIT)MS/MS] method was developed and validated for the quantification of protopanaxadiol (PPD) in rat plasma. Oleanolic acid (OA) was used as internal standard (IS). A simple protein precipitation based on acetonitrile (ACN) was employed. Chromatographic separation was performed on a Sepax GP‐C18 column (50 × 2.1 mm, 5 μM) with a mobile phase consisting of ACN–water and 1.5 μM formic acid and 25 mM lithium acetate (90 : 10, v/v) at a flow rate of 0.4 ml/min for 3.0 min. Multiple‐reaction‐monitoring mode was performed using lithium adduct ion as precursor ion of m/z 467.5/449.4 and 455.6/407.4 for the drug and IS, respectively. Calibration curve was recovered over a concentration range of 0.5–100 ng/ml with a correlation coefficient >0.99. The limit of detection was 0.2 ng/ml in rat plasma for PPD. The results of the intraday and interday precision and accuracy studies were well within the acceptable limits. The validated method was successfully applied to investigate the pharmacokinetic study of PPD after intravenous and gavage administration to rat. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The aim of the present study was to develop a simple, sensitive and accurate liquid chromatography–electrospray ionization tandem mass spectrometry (ESI‐MS/MS) method for the determination of lixivaptan (LIX) in mouse plasma using vildagliptin as the internal standard (IS). A precipitation procedure was used for the extraction of LIX and vildagliptin from mouse plasma. Chromatographic separation of LIX was achieved using a C18 analytical column (50 × 2.1 mm, 1.8 μm) at 25°C. The mobile phase comprised acetonitrile and ammonium formate (10 mm , pH 3.1; 40:60, v /v) pumped at a flow rate of 0.3 mL min−1. A tandem mass spectrometer with an electrospray ionization source was used to perform the assay. Quantification of LIX at m/z 290 → 137 and IS at 154 → 97 was attained through multiple reaction monitoring. The investigated method was authenticated following the bio‐analytical method of validation guidelines of the US Food and Drug Administration. The developed method showed a good linearity over the concentration range from 5 to 500 ng mL−1, and the calibration curve was linear (r = 0.9998). The mean recovery of LIX from mouse plasma was 99.2 ± 0.68%. All validation parameters for LIX were within the levels required for acceptance. The proposed method was effectively used for a pharmacokinetic study of LIX in mouse plasma.  相似文献   

18.
A rapid and highly sensitive assay method has been developed and validated for the estimation of bicalutamide (BCL) on mouse dried blood spots (DBS) using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the negative‐ion mode. The assay procedure involves a simple liquid extraction of BCL and tolbutamide (internal standard, IS) from mouse blood DBS cards using tert‐butyl methyl ether. Chromatographic separation was achieved with 5 mm ammonium acetate (pH 6.5)–acetonitrile (35:65, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 3.0 min. The MS/MS ion transitions monitored were 428.80 → 254.70 for BCL and 269.00 → 169.60 for IS. Method validation was performed as per regulatory guidelines. A linear response function was observed from 0.92 to 1911 ng/mL for BCL in mouse blood. The intra‐ and inter‐day precisions were in the ranges of 1.86–12.5 and 3.19–10.8%, respectively. This novel DBS method has been applied to a pharmacokinetic study in mice. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A highly sensitive, specific and rapid LC‐ESI‐MS/MS method has been developed and validated for the quantification of paricalcitol (PAR) in human plasma (500 μL) using paricalcitol‐d6 (PAR‐d6) as an internal standard (IS) as per regulatory guidelines. A liquid–liquid extraction method was used to extract the analyte and IS from human plasma. Chromatography was achieved on Zorbax SB C18 column using an isocratic mobile phase in a gradient flow. The total chromatographic run time was 6.0 min and the elution of PAR and PAR‐d6 occurred at ~2.6 min. A linear response function was established for the range of concentrations 10–500 pg/mL in human plasma. The intra‐ and inter‐day accuracy and precision values for PAR met the acceptance criteria. The validated assay was applied to quantitate PAR concentrations in human plasma following oral administration of 4 µg capsules to humans. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Three new indole alkaloids, 11,12‐de(methylenedioxy)danuphylline ( 1 ), methyl (2β,11β,12β,19α)‐6,7‐didehydro‐8,21‐dioxo‐11,21‐cycloaspidospermidine‐2‐carboxylate ( 2 ), and (2β,5β)‐aspidofractinin‐16‐ol ( 3 ) were isolated from Kopsia officinalis, together with 16 known compounds. Their structures were determined by spectroscopic methods. The isolated known compound (?)‐12‐methoxykopsinaline displayed antimanic effects in Drosophila, with an IC50 value of 12.5 μg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号