首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nonlinear model for a steady flow in a deformable porous medium is considered. The flow is governed by the poroelasticity system consisting of an elasticity equation for the displacement of the porous medium and Darcy's equation for the pressure in the fluid. This poroelasticity system is nonlinear when the permeability in Darcy's equation is assumed to depend on the dilatation of the porous medium. Existence and uniqueness of a weak solution of this poroelasticity system is established under rather weak assumptions on the regularity of the data. Convergence of a finite element approximation is proved and verified through numerical experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
We consider a non‐stationary Stokes system in a thin porous medium Ω? of thickness ? which is perforated by periodically solid cylinders of size a ? . We are interested here to give the limit behavior when ? goes to zero. To do so, we apply an adaptation of the unfolding method. Time‐dependent Darcy's laws are rigorously derived from this model depending on the comparison between a ? and ? . Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, a Galerkin's finite element approach based on weighted‐residual is presented to find approximate solutions of a system of fourth‐order boundary‐value problems associated with obstacle, unilateral and contact problems. The approach utilizes a piece‐wise cubic approximations utilizing cubic Hermite interpolation polynomials. Numerical studies have shown the superior accuracy and lesser computational cost of the scheme in comparison to cubic spline, non‐polynomial spline and cubic non‐polynomial spline methods. Numerical examples are presented to illustrate the applicability of the method. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1551–1560, 2011  相似文献   

4.
In this paper, we show the short time existence of the smooth solution for the porous medium equations in a smooth bounded domain:
(0.1)  相似文献   

5.
In this paper, a new numerical method is proposed and analyzed for the Allen–Cahn (AC) equation. We divide the AC equation into linear section and nonlinear section based on the idea of operator splitting. For the linear part, it is discretized by using the Crank–Nicolson scheme and solved by finite element method. The nonlinear part is solved accurately. In addition, a posteriori error estimator of AC equation is constructed in adaptive computation based on superconvergent cluster recovery. According to the proposed a posteriori error estimator, we design an adaptive algorithm for the AC equation. Numerical examples are also presented to illustrate the effectiveness of our adaptive procedure.  相似文献   

6.
讨论了2D Riesz分数阶扩散方程的Galerkin有限元方法.基于非结构网格,采用Lagrange线性分片多项式作为基函数,详细描述了分数阶扩散方程的有限元实现.与现有方法相比,该方法有效地降低了计算成本,提高了刚度矩阵的精度.最后,数值算例验证了所提方法的有效性.  相似文献   

7.
The aim of this study is to obtain numerical behavior of a one‐dimensional modified Burgers' equation using cubic B‐spline collocation finite element method after splitting the equation with Strang splitting technique. Moreover, the Ext4 and Ext6 methods based on Strang splitting and derived from extrapolation have also been applied to the equation. To observe how good and effective this technique is, we have used the well‐known the error norms L2 and L in the literature and compared them with previous studies. In addition, the von Neumann (Fourier series) method has been applied after the nonlinear term has been linearized to investigate the stability of the method.  相似文献   

8.
Recently Miller and his co-workers proposed a moving finite element method based on a least squares principle. This was followed by a similar method by the present authors using a Petrov—Galerkin approach. In this paper the two methods are compared. In particular, it is shown that both methods move their nodes according to an approximate equidistributing principle. This observation leads to a criterion for the placement of the nodes. It is also shown that the penalty function designed by Miller may also be used with the Petrov—Galerkin method. Finally, numerical examples are given, illustrating the performance of the two methods.  相似文献   

9.
We prove that as the solutions of , , , , , , , converges in to the solution of the ODE , , where , , satisfies in for some function , , satisfying whenever for a.e. , for and for , where is a constant and is any measurable subset of .

  相似文献   


10.
We propose a mixed finite element method for the numericalsolution of the stochastic pressure equation of Wick type. Inthis formulation, the pressure and the velocity are the mostrelevant unknowns. We give existence and uniqueness resultsfor the continuous problem and its approximation. Optimal errorestimates are derived and algorithmic aspects are discussed.Finally, the results of numerical experiments confirm the practicalefficiency of the mixed method.  相似文献   

11.
We consider a non‐stationary Stokes system in a thin porous medium of thickness ε that is perforated by periodically distributed solid cylinders of size ε, and containing a fissure of width ηε. Passing to the limit when ε goes to zero, we find a critical size in which the flow is described by a 2D quasi‐stationary Darcy law coupled with a 1D quasi‐stationary Reynolds problem. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Convergence results are presented for the immersed boundary (IB) method applied to a model Stokes problem. As a discretization method, we use the finite element method. First, the immersed force field is approximated using a regularized delta function. Its error in the W?1, p norm is examined for 1 ≤ p < n/(n ? 1), with n representing the space dimension. Subsequently, we consider IB discretization of the Stokes problem and examine the regularization and discretization errors separately. Consequently, error estimate of order h1 ? α in the W1, 1 × L1 norm for the velocity and pressure is derived, where α is an arbitrary small positive number. The validity of those theoretical results is confirmed from numerical examples.  相似文献   

13.
In this article, a porous medium equation with nonlocal boundary condition and a localized source is studied. The results of the existence of global solutions or blow-up of solutions are given. The blow-up rate estimates are also obtained under some conditions.  相似文献   

14.
A very simple and efficient finite element method is introduced for two and three dimensional viscous incompressible flows using the vorticity formulation. This method relies on recasting the traditional finite element method in the spirit of the high order accurate finite difference methods introduced by the authors in another work. Optimal accuracy of arbitrary order can be achieved using standard finite element or spectral elements. The method is convectively stable and is particularly suited for moderate to high Reynolds number flows.

  相似文献   


15.
One of the most important advantages of the Boundary Element Method (BEM) is that no internal discretization of the domain is required. This advantage, however, is generally lost when source terms are present in the governing differential equation. It is shown here that for the non-homogeneous Helmholtz equation with a harmonic source term, it is possible to transform the volume integral into a surface integral thus retaining this feature. The transformation is achieved using the Green formula. The technique is applied to solve numerically a test problem with known simple analytical solution.  相似文献   

16.
In this article, we extend the recently developed weak Galerkin method to solve the second‐order hyperbolic wave equation. Many nice features of the weak Galerkin method have been demonstrated for elliptic, parabolic, and a few other model problems. This is the initial exploration of the weak Galerkin method for solving the wave equation. Here we successfully developed and established the stability and convergence analysis for the weak Galerkin method for solving the wave equation. Numerical experiments further support the theoretical analysis. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 868–884, 2017  相似文献   

17.
Solutions of boundary value problems in three‐dimensional domains with edges may exhibit singularities which are known to influence both the accuracy of the finite element solutions and the rate of convergence in the error estimates. This paper considers boundary value problems for the Poisson equation on typical domains Ω ? ?3 with edge singularities and presents, on the one hand, explicit computational formulas for the flux intensity functions. On the other hand, it proposes and analyzes a nonconforming finite element method on regular meshes for the efficient treatment of the singularities. The novelty of the present method is the use of the explicit formulas for the flux intensity functions in defining a postprocessing procedure in the finite element approximation of the solution. A priori error estimates in H1(Ω) show that the present algorithm exhibits the same rate of convergence as it is known for problems with regular solutions.  相似文献   

18.
We show that a locally bounded nonnegative weak solution of the anisotropic porous media equation is locally continuous. The proof is based on DiBenedetto's technique called intrinsic scaling; by choosing an appropriate geometry one can deduce energy and logarithmic estimates from which one can implement an iterative method to obtain the regularity result.  相似文献   

19.
This paper presents a modified graded mesh for singularly perturbed two-parameter problems. The mesh is generated recursively using Newton's algorithm and some implicitly defined function. The problem is solved numerically using the finite element method based on higher order polynomials of degree p≥1. We prove parameter uniform convergence of optimal order in ε-weighted energy norm. A test example is taken to compare the proposed graded mesh with others found in the literature.  相似文献   

20.
This paper studies mixed finite element approximations to the solution of the viscoelasticity wave equation. Two new transformations are introduced and a corresponding system of first‐order differential‐integral equations is derived. The semi‐discrete and full‐discrete mixed finite element methods are then proposed for the problem based on the Raviart–Thomas–Nedelec spaces. The optimal error estimates in L2‐norm are obtained for the semi‐discrete and full‐discrete mixed approximations of the general viscoelasticity wave equation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号