首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic pentapeptides (e.g. Ac‐(cyclo‐1,5)‐[KAXAD]‐NH2; X=Ala, 1 ; Arg, 2 ) in water adopt one α‐helical turn defined by three hydrogen bonds. NMR structure analysis reveals a slight distortion from α‐helicity at the C‐terminal aspartate caused by torsional restraints imposed by the K(i)–D(i+4) lactam bridge. To investigate this effect on helix nucleation, the more water‐soluble 2 was appended to N‐, C‐, or both termini of a palindromic peptide ARAARAARA (≤5 % helicity), resulting in 67, 92, or 100 % relative α‐helicity, as calculated from CD spectra. From the C‐terminus of peptides, 2 can nucleate at least six α‐helical turns. From the N‐terminus, imperfect alignment of the Asp5 backbone amide in 2 reduces helix nucleation, but is corrected by a second unit of 2 separated by 0–9 residues from the first. These cyclic peptides are extremely versatile helix nucleators that can be placed anywhere in 5–25 residue peptides, which correspond to most helix lengths in protein–protein interactions.  相似文献   

2.
The catalytic effects of 1,5,7‐Triazabicyclo[4.4.0]dec‐5‐ene (TBD) with 2‐methylimidazole‐intercalated α‐zirconium phosphate (α‐ZrP?2MIm) in the reaction of glycidyl phenyl ether (GPE) and hexahydro‐4‐methylphthalic anhydride (MHHPA) were investigated. The reaction did not proceed within 1 h at 60 °C. On increasing the temperature to 100 °C, the conversion reached 93% for 1 h. Without the addition of TBD, the conversion was 67% at 100 °C for 1 h. Under storage conditions at 25 °C for 7 days, the conversion of GPE was only 18%. The curing behavior of 2,2‐bis(4‐glycidyloxyphenyl)propane (DGEBA) and MHHPA in the presence of TBD with α‐ZrP?2MIm was evaluated by differential scanning calorimetry. The addition of TBD with α‐ZrP?2MIm as a latent thermal initiator, the storage stability was maintained and the reaction proceeded rapidly under heating conditions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2557–2561  相似文献   

3.
Two new bis(ether acyl chloride)s, 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐1‐phenylethane and 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane, were prepared from readily available reagents. Aromatic polybenzoxazoles with both ether and phenylethylidene or 1‐phenyl‐2,2,2‐trifluoroethylidene linkages between phenylene units were obtained by a conventional two‐step procedure including the low‐temperature solution polycondensation of the bis(ether acyl chloride)s with three bis(o‐aminophenol)s, yielding poly(o‐hydroxyamide) precursors, and subsequent thermal cyclodehydration. The intermediate poly(o‐hydroxyamide)s exhibited inherent viscosities of 0.39–0.98 dL/g. All of the poly(o‐hydroxyamide)s were amorphous and soluble in polar organic solvents such as N,N‐dimethylacetamide, and most of them could afford flexible and tough films via solvent casting. The poly(o‐hydroxyamide)s exhibited glass‐transition temperatures (Tg's) of 129–194 °C and could be thermally converted into corresponding polybenzoxazoles in the solid state at temperatures higher than 300 °C. All the polybenzoxazoles were amorphous and showed an enhanced Tg but a dramatically decreased solubility with to respect to their poly(o‐hydroxyamide) precursors. They exhibited Tg's of 216–236 °C through differential scanning calorimetry and were stable up to 500 °C in nitrogen or air, with 10% weight‐loss temperatures being recorded between 538 and 562 °C in nitrogen or air. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 914–921, 2003  相似文献   

4.
Helix‐constrained polypeptides have attracted great interest for modulating protein–protein interactions (PPI). It is not known which are the most effective helix‐inducing strategies for designing PPI agonists/antagonists. Cyclization linkers (X1–X5) were compared here, using circular dichroism and 2D NMR spectroscopy, for α‐helix induction in simple model pentapeptides, Ac‐cyclo(1,5)‐[X1‐Ala‐Ala‐Ala‐X5]‐NH2, in water. In this very stringent test of helix induction, a Lys1→Asp5 lactam linker conferred greatest α‐helicity, hydrocarbon and triazole linkers induced a mix of α‐ and 310‐helicity, while thio‐ and dithioether linkers produced less helicity. The lactam‐linked cyclic pentapeptide was also the most effective α‐helix nucleator attached to a 13‐residue model peptide.  相似文献   

5.
Combining an electrophilic iron complex [Fe(Fpda)(THF)]2 ( 3 ) [Fpda=N,N′‐bis(pentafluorophenyl)‐o‐phenylenediamide] with the pre‐activation of α‐alkyl‐substituted α‐diazoesters reagents by LiAl(ORF)4 [ORF=(OC(CF3)3] provides unprecedented access to selective iron‐catalyzed intramolecular functionalization of strong alkyl C(sp3)?H bonds. Reactions occur at 25 °C via α‐alkyl‐metallocarbene intermediates, and with activity/selectivity levels similar to those of rhodium carboxylate catalysts. Mechanistic investigations reveal a crucial role of the lithium cation in the rate‐determining formation of the electrophilic iron‐carbene intermediate, which then proceeds by concerted insertion into the C?H bond.  相似文献   

6.
Complex formation of 2, 6‐bis(2′‐hydroxyphenyl)pyridine (H2Li) with Fe3+ and Cu2+ was investigated in a H2O/DMSO medium (mole fraction xDMSO = 0.2) by potentiometric and spectrophotometric methods. The pKa values of [H3Li]+ are 2.25, 10.51 and 14.0 (25 °C, 0.1 M KCl). The formation constants of [FeIII(Li)]+ and [CuII(Li)] (25 °C, 0.1 M KCl) are log β1 = 21.5 for Fe3+ and log β1 = 18.5 for Cu2+. The crystal structures of [Al(Li)2Na(EtOH)3], [Fe(Li)2Na(EtOH)3], and [Cu(Li)(py)]2 were investigated by single‐crystal X‐ray diffraction analyses. The FeIII and the AlIII compound are isotypic and crystallize in the monoclinic space group P21/n. Al‐compound (215 K): a = 12.599(3) Å, b = 16.653(3) Å, c = 17.525(4) Å, β = 100.27(3)°, Z = 4 for C40H40AlN2NaO7; Fe‐compound (293 K): a = 12.753(3) Å, b = 16.715(3) Å, c = 17.493(3) Å, β = 99.68(3)°, Z = 4 for C40H40FeN2NaO7. Both compounds contain a homoleptic, anionic bis‐complex [M(Li)2] of approximate D2 symmetry. The Cu compound crystallized as an uncharged, dinuclear and centrosymmetric [Cu(Li)(py)]2 complex in the monoclinic space group P21/n with (293 K) a = 13.386(3) Å, b = 9.368(2) Å, c = 14.656(3) Å, β = 100.65(3)°, Z = 2 for C44H32Cu2N4O4. The structural properties and in particular the possible influence of the ligand geometry on the stability of the metal complexes is discussed.  相似文献   

7.
A series of new α‐diimine nickel(II) catalysts bearing bulky chiral sec‐phenethyl groups have been synthesized and characterized. The molecular structure of representative chiral ligand, bis[N,N′‐(4‐methyl‐2,6‐di‐sec‐phenethylphenyl)imino]‐1,2‐dimethylethane rac‐1c and chiral complexes, {bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dibromidonickel rac‐2a and bis{bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dibromidonickel rac‐2b, were confirmed by X‐ray crystallographic analysis. Complex rac‐2c bearing two chiral sec‐phenethyl groups in the ortho‐aryl position and a methyl group in the para‐aryl position, activated by diethylaluminum chloride (DEAC), showed highly catalytic activity for the polymerization of ethylene [4.12 × 106 g PE (mol Ni.h.bar)?1], and produced highly branched polyethylenes under low ethylene pressure (branching degree: 104, 118 and 126 branches/1000 C at 20, 40 and 60°C, respectively). Chiral 20‐electron bis‐α‐diimine Ni(II) complex rac‐2b also exhibited high activity toward ethylene polymerization [1.71 × 106 g PE (mol Ni · h · bar)?1]. The type and amount of branches of the polyethylenes obtained were determined by 1H and 13C NMR. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Maintaining specific conformations of peptide ligands is crucial for improving the efficacy of biological interactions. Here, a one‐pot polymerization strategy for stabilizing the α‐helical conformation of peptides while simultaneously constructing multimeric ligands is presented. The new method, termed stapling polymerization, uses radical polymerization between acryloylated peptide side chains and vinylic monomers. Studies with model peptides indicate that i, i+7 crosslinking is effective for the helix stabilization, whereas i, i+4 crosslinking is not. The stapling polymerization results in the formation of peptide–polyacrylamide conjugates that include ≈3–16 peptides in a single conjugate. This stapling polymerization provides a simple but powerful methodology to fabricate multimeric α‐helices that can further be developed to modulate multivalent biomacromolecular interactions.

  相似文献   


9.
An α‐diimine Pd(II) complex containing chiral sec‐phenethyl groups, {bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dichloropalladium (rac‐ C1 ), was synthesized and characterized. rac‐ C1 was applied as an efficient catalyst for the Suzuki–Miyaura cross‐coupling reaction between various aniline halides and arylboronic acid in PEG‐400–H2O at room temperature. Among a series of aniline halides, rac‐ C1 did not catalyze the cross‐coupling of aniline chlorides and fluorides but efficiently catalyzed the cross‐coupling of aniline bromides and iodides with phenylboronic acid. The catalytic activity reduced slightly with increasing steric hindrance of the aniline bromides. The complexes {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]‐2,3‐butadiene}dichloropalladium and {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]acenaphthene}dichloropalladium were also found to be efficient catalysts for the reaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The unusual 12‐membered ring compound, octahydro‐5H,12H‐4,11‐methano‐1H,7H‐bis[1,2,5]oxadiazolo[3,4‐d:3′,4′‐j][1,7,3,9]dioxadiazacyclododecine is obtained from the acid catalyzed reaction of 3‐amino‐4‐hydroxymethylfurazan with formaldehyde instead of the expected methylene‐bridged compound, 4,4′‐methylenebis[4,5‐dihydro‐7H‐[1,2,5]oxadiazolo[3,4‐d][1,3]oxazine]. The compound crystallizes in Tetragonal, P43212, a = 6.4141(4) Å, b = 6.4141(4) Å, c = 26.525(3) Å, α = 90°, β = 90°, γ = 90°, V = 1091.27(16) Å3, Z = 4, dcalc = 1.614 Mg/m3.  相似文献   

11.
The title complex, C17H9N5·C6H4S4, contains π‐deficient bis(di­nitrile) and TTF mol­ecules stacked alternately in columns along the a‐axis direction; the interplanar angle between the TTF molecule and the isoindolinyl C4N[C(CN)2]2 moiety is 1.21 (4)°. The N‐allyl moiety in the TCPI mol­ecule is oriented at an angle of 87.10 (10)° with respect to the five‐membered C4N ring, and the four C[triple‐bond]N bond lengths range from 1.134 (3) to 1.142 (3) Å, with C—C[triple‐bond]N angles in the range 174.3 (3)–176.9 (2)°. In the TTF system, the S—C bond lengths are 1.726 (3)–1.740 (3) and 1.751 (2)–1.763 (2) Å for the external S—C(H) and internal S—C(S) bonds, respectively.  相似文献   

12.
2,4,8‐Trialkyl‐3‐thia‐1,5‐diazabicyclo[3.2.1]octanes have been obtained by the regioselective and stereoselective cyclocondensation of 1,2‐ethanediamine with aldehydes RCHO (R═Me, Et, Prn, Bun, Pentn) and H2S at molar ratio 1:3:2 at 0°C. The increase in molar ratio of thiomethylation mixture RCHO–H2S (6:4) at 40°C resulted in selective formation of bis‐(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)ethanes. Cyclothiomethylation of aliphatic α,ω‐diamines with aldehydes RCHO (R═Me, Et) and H2S at molar ratio 1:6:4 and at 40°С led to α,ω‐bis(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)alkanes. Stereochemistry of 2,4,8‐trialkyl‐3‐thia‐1,5‐diazabicyclo[3.2.1]octanes have been determined by means of 1H and 13С NMR spectroscopy and further supported by DFT calculations at the B3LYP/6‐31G(d,p) level. The structure of α,ω‐bis(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)alkanes was confirmed by single‐crystal X‐ray diffraction study.  相似文献   

13.
A negative‐type photosensitive poly(phenylene ether) (PSPPE) based on poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE), a novel crosslinker 4,4′‐methylene‐bis [2,6‐bis(methoxymethyl)phenol] (MBMP) having good compatibility with PPE, and diphenylidonium 9,10‐dimethoxy anthracene‐2‐sulfonate (DIAS) as a photoacid generator (PAG) has been developed. This resist consisting of PPE (73 wt %), MBMP (20 wt %) and DIAS (7 wt %) showed a high sensitivity (D0.5) of 58 mJ/cm2 and a contrast (γ0.5) of 9.5 when it was exposed to i‐line (365 nm wavelength light), postexposure baked at 145 °C for 10 min, and developed with toluene at 25 °C. A fine negative image featuring 6 μm line‐and‐space pattern was obtained on the film exposed to 300 mJ/cm2 of i‐line by a contact‐printed mode. The resulting polymer film cured at 300 °C for 1 h under nitrogen had a low dielectric constant (ε = 2.46) comparable to that of PPE and a higher Tg than that of PPE. In addition, the cured PSPPE film was pretty low water absorption (<0.05%) as same as PPE. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4949–4958, 2008  相似文献   

14.
A new cardo diacid chloride, 1,1‐bis‐[4‐(4‐chlorocarboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane ( 4 ), was synthesized from 1,1‐bis‐[4‐(4‐carboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane in refluxing thionyl chloride. Subsequently, various new polyesters were prepared from 4 with various bisphenols by solution polycondensation in nitrobenzene using pyridine as a hydrogen chloride quencher at 150 °C. These polyesters were produced with inherent viscosities of 0.32–0.50 dL · g?1. Most of these polyesters exhibited excellent solubility in a variety of solvents such as N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. These polymers showed glass‐transition temperatures (Tg's) between 144 and 197 °C. The polymer containing the adamantane group exhibited the highest Tg value. The 10% weight loss temperatures of the polyesters, measured by thermogravimetric analysis, were found to be in the range of 426–451 °C in nitrogen. These cardo polyesters exhibited higher Tg's and better solubility than bisphenol A‐based polyesters. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2951–2956, 2001  相似文献   

15.
Three new bis(ether‐acyl chloride) monomers, 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]cyclohexane ( 1a ), 5,5‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐4,7‐methanohexahydroindan ( 1b ), and 9,9‐bis[4‐(4‐chloroformylphenoxy)phenyl]fluorene ( 1c ), were synthesized from readily available compounds. Aromatic polybenzoxazoles bearing ether and cardo groups were obtained by the low‐temperature solution polycondensation of the bis(ether‐acyl chloride)s with three bis(aminophenol)s and the subsequent thermal cyclodehydration of the resultant poly(o‐hydroxy amide)s. The intermediate poly(o‐hydroxy amide)s exhibited inherent viscosities in the range of 0.35–0.71 dL/g. All of the poly(o‐hydroxy amide)s were amorphous and soluble in many organic polar solvents, and most of them could afford flexible and tough films by solvent casting. The poly(o‐hydroxy amide)s exhibited glass‐transition temperatures (Tg's) in the range of 141–169 °C and could be thermally converted into the corresponding polybenzoxazoles approximately in the region of 240–350 °C, as indicated by the DSC thermograms. Flexible and tough films of polybenzoxazoles could be obtained by thermal cyclodehydration of the poly(o‐hydroxy amide) films. All the polybenzoxazoles were amorphous and showed an enhanced Tg but a dramatically decreased solubility as compared with their poly(o‐hydroxy amide) precursors. They exhibited Tg's of 215–272 °C by DSC and showed insignificant weight loss before 500 °C in nitrogen or air. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4014–4021, 2001  相似文献   

16.
Highly refractive and transparent polyimides (PIs) based on fluorene‐bridged and sulfur‐containing monomers have been developed. An aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA), was polymerized with several fluorene‐containing diamines, including commercially available 9,9′‐bis(p‐aminophenyl)fluorene (APF), 9,9′‐bis[4‐(p‐aminophenoxy)phenyl]fluorene (OAPF), and newly synthesized 9,9′‐bis[4‐(p‐aminophenyl)sulfanylphenyl]fluorene (ASPF) to afford series A PIs. Meanwhile, series B PIs were obtained from a new dianhydride, 4,4′‐[(9H‐fluorene‐9‐ylidene)bis(p‐phenylsulfanyl)]diphthalic anhydride (FPSP) and two aromatic diamines, ASPF and 4,4′‐thiobis[(p‐phenylenesulfanyl)aniline] (3SDA) via a two‐step polycondensation procedure. The PIs exhibit good thermal stabilities, such as relatively high glass transition temperatures in the range of 220–270 °C and high initial thermal decomposition temperatures (T10%) exceeding 490 °C. The 9,9′‐disubstituted fluorene moieties endow the PI films with good optical transparency. The optical transmittances of the PI films at 450 nm are all higher than 80% for the thickness of about 10 μm. Furthermore, the highly aromatic fluorene moiety and flexible thioether linkages in the molecular chains of the PIs provide them with high refractive indices of 1.6951–1.7258 and small birefringence of 0.0056–0.0070. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1510–1520, 2008  相似文献   

17.
Molecules of the title compound, alternatively called (R,R)‐N,N′‐bis(3‐methoxysalicylidene)‐trans‐cyclohexane‐1,2‐diamine, C22H26N2O4, contain two intramolecular O—H⃛N hydrogen bonds and adopt a conformation with approximate twofold rotational symmetry. The mol­ecules are linked by three C—H⃛O hydrogen bonds [H⃛O = 2.45–2.55 Å, C⃛O = 3.329 (2)–3.398 (2) Å and C—H⃛O = 142–172°] into a continuous framework.  相似文献   

18.
A new phosphorus‐containing aromatic diamine, 1,4‐bis(4‐aminophenoxy)‐2‐(6‐oxido‐6H‐dibenz[c,e] [1,2]oxaphosphorin‐6‐yl) phenylene ( 3 ) was synthesized by the nucleophilic aromatic substitution of 2‐(6‐oxido‐6H‐dibenz[c,e] [1,2]oxaphosphorin‐6‐yl)‐1,4‐dihydroxy phenylene ( 1 ) with 4‐fluoronitrobenzene, followed by catalytic hydrogenation. Light color, flexible, and creasable polyimides with high molecular weight, high glass transition, high thermal stability, improved organosolubility, and good oxygen plasma resistance were synthesized from the condensation of ( 3 ) with various aromatic dianhydrides in N,N‐dimethylacetamide, followed by thermal imidization. The number‐average molecular weights of polyimides are in the range of 7.0–8.3 × 104 g/mol, and the weight‐average molecular weights are in the range of 12.5–16.5 × 104 g/mol. The Tgs of these polyimides range from 230 to 304 °C by differential scanning calorimetry and from 228 to 305 °C by DMA. These polyimides are tough and flexible, with tensile strength at around 100 MPa. The degradation temperatures (Td 5%) and char yields at 800 °C in nitrogen range from 544 to 597 °C and 59–65 wt %, respectively. Polyimides 5c and 5e , derived from OPDA and 6FDA, respectively, with the cutoff wavelength of 347 and 342 μm, respectively, show very light color. These polyimides also exhibit good oxygen plasma resistance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2897–2912, 2007  相似文献   

19.
The small synthetic peptide, benzyl 2‐(tert‐but­oxy­carbonyl‐amino)­isobutyrate, C16H23NO4, has the α‐helical conformation [|?| = 55.8 (2)° and |ψ| = 37.9 (2)°] observed in peptide fragments of peptaibols containing the α‐amino­isobutyric acid (Aib) residue. The structure shows no intramolecular hydrogen bonding, which would disrupt the limited conformational freedom associated with this amino acid. Two weak intermolecular hydrogen contacts are observed.  相似文献   

20.
Three‐ and five‐membered rings that bear the (Si‐C‐S ) and (Si‐C‐C‐C‐S ) unit have been synthesized by the reactions of L SiCl ( 1 ; L =PhC(NtBu)2) and L′ Si ( 2 ; L′ =CH{(C?CH2)(CMe)(2,6‐iPr2C6H3N)2}) with the thioketone 4,4′‐bis(dimethylamino)thiobenzophenone. Treatment of 4,4′‐bis(dimethylamino)thiobenzophenone with L SiCl at room temperature furnished the [1+2]‐cycloaddition product silathiacyclopropane 3 . However, reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si at low temperature afforded a [1+4]‐cycloaddition to yield the five‐membered ring product 4 . Compounds 3 and 4 were characterized by NMR spectroscopy, EIMS, and elemental analysis. The molecular structures of 3 and 4 were unambiguously established by single‐crystal X‐ray structural analysis. The room‐temperature reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si resulted in products 4 and 5 , in which 4 is the dearomatized product and 5 is formed under the 1,3‐migration of a hydrogen atom from the aromatic phenyl ring to the carbon atom of the C? S unit. Furthermore, the optimized structures of probable products were investigated by using DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号