首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bonding modes of the ligand di‐2‐pyridyl ketoxime towards half‐sandwich arene ruthenium, Cp*Rh and Cp*Ir complexes were investigated. Di‐2‐pyridyl ketoxime {pyC(py)NOH} react with metal precursor [Cp*IrCl2]2 to give cationic oxime complexes of the general formula [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1a ) and [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1b ), for which two coordination isomers were observed by NMR spectroscopy. The molecular structures of the complexes revealed that in the major isomer the oxime nitrogen and one of the pyridine nitrogen atoms are coordinated to the central iridium atom forming a five membered metallocycle, whereas in the minor isomer both the pyridine nitrogen atoms are coordinated to the iridium atom forming a six membered metallacyclic ring. Di‐2‐pyridyl ketoxime react with [(arene)MCl2]2 to form complexes bearing formula [(p‐cymene)Ru{pyC(py)NOH}Cl]PF6 ( 2 ); [(benzene)Ru{pyC(py)NOH}Cl]PF6 ( 3 ), and [Cp*Rh{pyC(py)NOH}Cl]PF6 ( 4 ). In case of complex 3 the ligand coordinates to the metal by using oxime nitrogen and one of the pyridine nitrogen atoms, whereas in complex 4 both the pyridine nitrogen atoms are coordinated to the metal ion. The complexes were fully characterized by spectroscopic techniques.  相似文献   

2.
The d6 metal complexes of thiourea derivatives were synthesized to investigate its cytotoxicity. Treatment of various N‐phenyl‐N´ pyridyl/pyrimidyl thiourea ligands with half‐sandwich d6 metal precursors yielded a series of cationic complexes. Reactions of ligand (L1‐L3) with [(p‐cymene)RuCl2]2 and [Cp*MCl2]2 (M = Rh/Ir) led to the formation of a series of cationic complexes bearing general formula [(arene)M(L1)к2(N,S)Cl]+, [(arene)M(L2)к2(N,S)Cl]+ and [(arene)M(L3)к2(N,S)Cl]+ [arene = p‐cymene, M = Ru ( 1 , 4 , 7 ); Cp*, M = Rh ( 2 , 5 , 8 ); Cp*, Ir ( 3 , 6 , 9 )]. These compounds were isolated as their chloride salts. X‐ray crystallographic studies of the complexes revealed the coordination of the ligands to the metal in a bidentate chelating N,S‐ manner. Further the cytotoxicity studies of the thiourea derivatives and its complexes evaluated against HCT‐116 (human colorectal cancer), MIA‐PaCa‐2 (human pancreatic cancer) and ARPE‐19 (non‐cancer retinal epithelium) cancer cell lines showed that the thiourea ligands displayed no activity. Upon complexation however, the metal compounds possesses cytotoxicity and whilst potency is less than cisplatin, several complexes exhibited greater selectivity for HCT‐116 or MIA‐PaCa‐2 cells compared to ARPE‐19 cells than cisplatin in vitro. Rhodium complexes of thiourea derivatives were found to be more potent as compared to ruthenium and iridium complexes.  相似文献   

3.
The reaction of [(p‐cymene)RuCl2]2 and [Cp*MCl2]2 (M = Rh/Ir) with benzoyl (2‐pyrimidyl) thiourea (L1) and benzoyl (4‐picolyl) thiourea (L2) led to the formation of cationic complexes bearing formula [(arene) M (L1)к2 (N,S) Cl]+ and [(arene) M (L2)к2(N,S)Cl]+ [(arene) = p‐cymene, M = Ru, ( 1 , 4 ); Cp*, M = Rh ( 2 , 5 ) and Ir ( 3 , 6 )]. Precursor compounds reacted with benzoyl (6‐picolyl) thiourea (L3) affording neutral complexes having formula [(arene) M (L3)к1(S)Cl2] [arene = p‐cymene, M = Ru, ( 7 ); Cp*, M = Rh ( 8 ), Ir ( 9 )]. X‐ray studies revealed that the methyl substituent attached to the pyridine ring in ligands L2 and L3 affects its coordination mode. When methyl group is at the para position of the pyridine ring (L2), the ligand coordinated metal in a bidentate chelating N, S‐ mode whereas methyl group at ortho position (L3), it coordinated in a monodentate mode. Further the anti‐cancer studies of the thiourea derivatives and its complexes carried out against HCT‐116, HT‐29 (human colorectal cancer), Mia‐PaCa‐2 (human pancreatic cancer) and ARPE‐19 (non‐cancer retinal epithelium) cell lines showed that the thiourea ligands are inactive but upon complexation, the metal compounds displayed potent and selective activity against cancer cells in vitro. Iridium complexes were found to be more potent as compared to ruthenium and rhodium complexes.  相似文献   

4.
Half‐sandwich ruthenium, rhodium and iridium complexes ( 1 – 12 ) were synthesized with aldoxime ( L1 ), ketoxime ( L2 ) and amidoxime ( L3 ) ligands. Ligands have the general formula [PyC(R)NOH], where R = H ( L1 ), R = CH3 ( L2 ) and R = NH2 ( L3 ). Reaction of [{(arene)MCl2}2] (arene = p ‐cymene, benzene, Cp*; M = Ru, Rh, Ir) with ligands L1 – L3 in 1:2 metal precursor‐to‐ligand ratio yielded complexes such as [{(arene)MLκ2(N∩N)Cl}]PF6. All the ligands act as bidentate chelating nitrogen donors in κ2(N∩N) fashion while forming complexes. In vitro anti‐tumour activity of complexes 2 and 10 against HT‐29 (human colorectal cancer), BE (human colorectal cancer) and MIA PaCa‐2 (human pancreatic cancer) cell lines and non‐cancer cell line ARPE‐19 (human retinal epithelial cells) revealed a comparable activity although complex 2 demonstrated greater selectivity for MIA PaCa‐2 cells than cisplatin. Further studies demonstrated that complexes 3 , 6 , 9 and 12 induced significant apoptosis in Dalton's ascites lymphoma (DL) cells. In vivo anti‐tumour activity of complex 2 on DL‐bearing mice revealed a statistically significant anti‐tumour activity (P  = 0.0052). Complexes 1 – 12 exhibit HOMO–LUMO energy gaps from 3.31 to 3.68 eV. Time‐dependent density functional theory calculations explain the nature of electronic transitions and were in good agreement with experiments.  相似文献   

5.
By simple ligand exchange of the cationic transition‐metal complexes [(Cp*)M(acetone)3](OTf)2 (Cp*=pentamethylcyclopentadienyl and M=Ir or Rh) with pillar[5]arene, mono‐ and polynuclear pillar[5]arenes, a new class of metalated host molecules, is prepared. Single‐crystal X‐ray analysis shows that the charged transition‐metal cations are directly bound to the outer π‐surface of aromatic rings of pillar[5]arene. One of the triflate anions is deeply embedded within the cavity of the trinuclear pillar[5]arenes, which is different to the host–guest behavior of most pillar[5]arenes. DFT calculation of the electrostatic potential revealed that the metalated pillar[5]arenes featured an electron‐deficient cavity due to the presence of the electron‐withdrawing transition metals, thus allowing encapsulation of electron‐rich guests mainly driven by anion–π interactions.  相似文献   

6.
Piano‐stool‐shaped platinum group metal compounds, stable in the solid state and in solution, which are based on 2‐(5‐phenyl‐1H‐pyrazol‐3‐yl)pyridine ( L ) with the formulas [(η6‐arene)Ru( L )Cl]PF6 {arene = C6H6 ( 1 ), p‐cymene ( 2 ), and C6Me6, ( 3 )}, [(η6‐C5Me5)M( L )Cl]PF6 {M = Rh ( 4 ), Ir ( 5 )}, and [(η5‐C5H5)Ru(PPh3)( L )]PF6 ( 6 ), [(η5‐C5H5)Os(PPh3)( L )]PF6 ( 7 ), [(η5‐C5Me5)Ru(PPh3)( L )]PF6 ( 8 ), and [(η5‐C9H7)Ru(PPh3)( L )]PF6 ( 9 ) were prepared by a general method and characterized by NMR and IR spectroscopy and mass spectrometry. The molecular structures of compounds 4 and 5 were established by single‐crystal X‐ray diffraction. In each compound the metal is connected to N1 and N11 in a k2 manner.  相似文献   

7.
C? H activation by acetate‐assisted cyclometallation of a phenyl group with half‐sandwich complexes [{MCl2Cp*}2] (M=Ir, Rh) and [{RuCl2(p‐cymene)}2] can be directed by a wide range of nitrogen donor ligands including pyrazole, oxazoline, oxime, imidazole and triazole, and X‐ray structures of a number of complexes are reported. All the ligands tested cyclometallated at iridium, however ruthenium and rhodium fail to cause cyclometallation in some cases. As a result, the nitrogen donors have been categorised based on their reactivity with the three metals used. The relevance of these cyclometallation reactions to catalytic synthesis of carbocycles and heterocycles is discussed.  相似文献   

8.
The reaction of [RhCl(η4‐Ph2R2C4CO)]2 (R=Ph, 2‐naphthyl) with the dimeric complexes [RuCl2(p‐cymene)]2 p‐cymene=1‐methyl‐4‐(1‐methylethyl)benzene, [RuCl2(1,3,5‐Et3C6H3)]2, [MCl2(Cp*)]2 (M=Rh, Ir; Cp*=1,2,3,4,5‐pentamethylcyclopenta‐2,4‐dien‐1‐yl), [RuCl2(CO)3]2, [RuCl2(dcypb)(CO)]2 (dcypb=butane‐1,4‐diylbis[dicyclohexylphosphine]), [(dppb)ClRu(μ‐Cl)2(μ‐OH2)RuCl(dppb)] (dppb=butane‐1,4‐diylbis[diphenylphosphine]), and [(dcypb)(N2)Ru(μ‐Cl)3RuCl(dcypb)] was investigated. In all cases, mixed, chloro‐bridged complexes were formed in quantitative yield (see 5 – 8, 9 – 16, 18, 19, 21 , and 22 ). The six new complexes 5, 8, 9, 13, 15 , and 22 were characterized by single‐crystal X‐ray analysis (Figs. 13).  相似文献   

9.
Taking inspiration from yeast alcohol dehydrogenase (yADH), a benzimidazolium (BI+) organic hydride‐acceptor domain has been coupled with a 1,10‐phenanthroline (phen) metal‐binding domain to afford a novel multifunctional ligand ( L BI+) with hydride‐carrier capacity ( L BI++H?? L BIH). Complexes of the type [Cp*M( L BI)Cl][PF6]2 (M=Rh, Ir) have been made and fully characterised by cyclic voltammetry, UV/Vis spectroelectrochemistry, and, for the IrIII congener, X‐ray crystallography. [Cp*Rh( L BI)Cl][PF6]2 catalyses the transfer hydrogenation of imines by formate ion in very goods yield under conditions where the corresponding [Cp*Ir( L BI)Cl][PF6] and [Cp*M(phen)Cl][PF6] (M=Rh, Ir) complexes are almost inert as catalysts. Possible alternatives for the catalysis pathway are canvassed, and the free energies of intermediates and transition states determined by DFT calculations. The DFT study supports a mechanism involving formate‐driven Rh?H formation (90 kJ mol?1 free‐energy barrier), transfer of hydride between the Rh and BI+ centres to generate a tethered benzimidazoline (BIH) hydride donor, binding of imine substrate at Rh, back‐transfer of hydride from the BIH organic hydride donor to the Rh‐activated imine substrate (89 kJ mol?1 barrier), and exergonic protonation of the metal‐bound amide by formic acid with release of amine product to close the catalytic cycle. Parallels with the mechanism of biological hydride transfer in yADH are discussed.  相似文献   

10.
Treatment of [Ir(bpa)(cod)]+ complex [ 1 ]+ with a strong base (e.g., tBuO?) led to unexpected double deprotonation to form the anionic [Ir(bpa?2H)(cod)]? species [ 3 ]?, via the mono‐deprotonated neutral amido complex [Ir(bpa?H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal–chelate ring may explain the favourable double deprotonation. The rhodium analogue [ 4 ]? was prepared in situ. The new species [M(bpa?2H)(cod)]? (M=Rh, Ir) are best described as two‐electron reduced analogues of the cationic imine complexes [MI(cod)(Py‐CH2‐N?CH‐Py)]+. One‐electron oxidation of [ 3 ]? and [ 4 ]? produced the ligand radical complexes [ 3 ]. and [ 4 ].. Oxygenation of [ 3 ]? with O2 gave the neutral carboxamido complex [Ir(cod)(py‐CH2N‐CO‐py)] via the ligand radical complex [ 3 ]. as a detectable intermediate.  相似文献   

11.
Metal Complexes of Biologically Important Ligands, CLVII [1] Halfsandwich Complexes of Isocyanoacetylamino acid esters and of Isocyanoacetyldi‐ and tripeptide esters (?Isocyanopeptides”?) N‐Isocyanoacetyl‐amino acid esters CNCH2C(O) NHCH(R)CO2CH3 (R = CH3, CH(CH3)2, CH2CH(CH3)2, CH2C6H5) and N‐isocyanoacetyl‐di‐ and tripeptide esters CNCH2C(O)NHCH(R1)C(O)NHCH(R2)CO2C2H5 and CNCH2C(O)NHCH(R1)C(O)NHCH (R2)C(O)NHCH(R3)CO2CH3 (R1 = R2 = R3 = CH2C6H5, R2 = H, CH2C6H5) are available by condensation of potassium isocyanoacetate with amino acid esters or peptide esters. These isocyanides form with chloro‐bridged complexes [(arene)M(Cl)(μ‐Cl)]2 (arene = Cp*, p‐cymene, M = Ir, Rh, Ru) in the presence of Ag[BF4] or Ag[CF3SO3] the cationic halfsandwich complexes [(arene)M(isocyanide)3]+X? (X = BF4, CF3SO3).  相似文献   

12.
Monophosphine‐o‐carborane has four competitive coordination modes when it coordinates to metal centers. To explore the structural transitions driven by these competitive coordination modes, a series of monophosphine‐o‐carborane Ir,Rh complexes were synthesized and characterized. [Cp*M(Cl)2{1‐(PPh2)‐1,2‐C2B10H11}] (M=Ir ( 1 a ), Rh ( 1 b ); Cp*=η5‐C5Me5), [Cp*Ir(H){7‐(PPh2)‐7,8‐C2B9H11}] ( 2 a ), and [1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 3 a ), Rh ( 3 b )) can be all prepared directly by the reaction of 1‐(PPh2)‐1,2‐C2B10H11 with dimeric complexes [(Cp*MCl2)2] (M=Ir, Rh) under different conditions. Compound 3 b was treated with AgOTf (OTf=CF3SO3?) to afford the tetranuclear metallacarborane [Ag2(thf)2(OTf)2{1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐RhC2B9H10}2] ( 4 b ). The arylphosphine group in 3 a and 3 b was functionalized by elemental sulfur (1 equiv) in the presence of Et3N to afford [1‐{(S)PPh2}‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 5 a ), Rh ( 5 b )). Additionally, the 1‐(PPh2)‐1,2‐C2B10H11 ligand was functionalized by elemental sulfur (2 equiv) and then treated with [(Cp*IrCl2)2], thus resulting in two 16‐electron complexes [Cp*Ir(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H9)] ( 6 a ) and [Cp*Ir(7‐{(S)PPh2}‐8‐S‐9‐OCH3‐7,8‐C2B9H9)] ( 7 a ). Compound 6 a further reacted with nBuPPh2, thereby leading to 18‐electron complex [Cp*Ir(nBuPPh2)(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H10)] ( 8 a ). The influences of other factors on structural transitions or the formation of targeted compounds, including reaction temperature and solvent, were also explored.  相似文献   

13.
Neutral half‐sandwich η6p ‐cymene ruthenium(II) complexes of general formula [Ru(η6p ‐cymene)Cl(L)] (HL = monobasic O, N bidendate benzoylhydrazone ligand) have been synthesized from the reaction of [Ru(η6p ‐cymene)(μ‐Cl)Cl]2 with acetophenone benzoylhydrazone ligands. All the complexes have been characterized using analytical and spectroscopic (Fourier transform infrared, UV–visible, 1H NMR, 13C NMR) techniques. The molecular structures of three of the complexes have been determined using single‐crystal X‐ray diffraction, indicating a pseudo‐octahedral geometry around the ruthenium(II) ion. All the ruthenium(II) arene complexes were explored as catalysts for transfer hydrogenation of a wide range of aromatic, cyclic and aliphatic ketones with 2‐propanol using 0.1 mol% catalyst loading, and conversions of up to 100% were obtained. Further, the influence of other variables on the transfer hydrogenation reaction, such as base, temperature, catalyst loading and substrate scope, was also investigated.  相似文献   

14.
The electronic characteristics of mixed‐valence complexes are often inferred from the shape of the inter‐valence charge transfer (IVCT) band, which usually falls in the near infrared (NIR) region, and relationships derived from Marcus‐Hush theory. These analyses typically assume one single, dominant molecular conformation. The NIR spectra of the prototypical delocalised (Class III Robin–Day mixed‐valence) complexes [{Ru(pp)Cp’}2(μ‐C≡C?C≡C)]+ ([ 1 ]+: Cp’=Cp, pp=(PPh3)2; [ 2 ]+: Cp’=Cp, pp=dppe; [ 3 ]+: Cp’=Cp*, pp=dppe) feature a ‘two‐band’ pattern, which complicates band‐shape analysis using these traditional methods. In the past, the appearance of sub‐bands within or near the IVCT transition has been attributed to vibronic effects or localised d‐d transitions. Quantum‐chemical modelling of a series of rotational conformers of [ 1 ]+–[ 3 ]+ reveals the two components that contribute to the NIR absorption band envelope to be a π‐π* transition and an MLCT transition. The MLCT components only gain appreciable intensity when the orientation of the half‐sandwich ruthenium ligand spheres deviates from idealised cis (Ω P?Ru?Ru?P=0°) or trans (Ω P?Ru?Ru?P=180°) conformations. The increased steric demand of the supporting ligands, together with some underlying inter‐phosphine ligand T‐shaped CH???π stacking interactions across the series [ 1 ]+ to [ 2 ]+ to [ 3 ]+ results in local minima biased towards such non‐idealised conformations of the metal‐ligand fragments (Ω P?Ru?Ru?P=33–153°). Experimentally, this is indicated by appearance of multiple bands within the IR (C≡C) band envelopes and increasing intensity of the higher‐energy MLCT transition(s) relative to the π‐π* transition across the series, and the appearance of a pronounced ‘two‐band’ pattern in the experimental NIR absorption envelopes. These conformational effects and the methods of analysis presented here, which combine analysis of IR and NIR spectra with quantum‐chemical calculations on a range of energetically similar conformational minima, are expected to be quite general for mixed‐valence systems.  相似文献   

15.
Synthesis, structure, and reactivity of carboranylamidinate‐based half‐sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μCl)Cl}2] (M=Ir, Rh; Cp*=η5‐C5Me5) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18‐electron complexes [Cp*IrCl(CabN‐DIC)] ( 1 a ; CabN‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NHiPr)]), [Cp*RhCl(CabN‐DIC)] ( 1 b ), and [Cp*RhCl(CabN‐DCC)] ( 1 c ; CabN‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NHCy)]). A series of 16‐electron half‐sandwich Ir and Rh complexes [Cp*Ir(CabN′‐DIC)] ( 2 a ; CabN′‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NiPr)]), [Cp*Ir(CabN′‐DCC)] ( 2 b , CabN′‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NCy)]), and [Cp*Rh(CabN′‐DIC)] ( 2 c ) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(CabN,S‐DIC)], [Cp*M(CabN,S‐DCC)] (M=Ir 3 a , 3 b ; Rh 3 c , 3 d ), formed through BH activation, are obtained by reaction of [{Cp*MCl2}2] with carboranylamidinate sulfides [RN?C(closo‐1,2‐C2B10H10)(NHR)]S? (R=iPr, Cy), which can be prepared by inserting sulfur into the C? Li bond of lithium carboranylamidinates. Iridium complex 1 a shows catalytic activities of up to 2.69×106 gPNB ${{\rm{mol}}_{{\rm{Ir}}}^{ - {\rm{1}}} }Synthesis, structure, and reactivity of carboranylamidinate-based half-sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μ-Cl)Cl}(2)] (M = Ir, Rh; Cp* = η(5)-C(5)Me(5)) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18-electron complexes [Cp*IrCl(Cab(N)-DIC)] (1?a; Cab(N)-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NHiPr)]), [Cp*RhCl(Cab(N)-DIC)] (1?b), and [Cp*RhCl(Cab(N)-DCC)] (1?c; Cab(N)-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10))(NHCy)]). A series of 16-electron half-sandwich Ir and Rh complexes [Cp*Ir(Cab(N')-DIC)] (2?a; Cab(N')-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NiPr)]), [Cp*Ir(Cab(N')-DCC)] (2?b, Cab(N')-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10)(NCy)]), and [Cp*Rh(Cab(N')-DIC)] (2?c) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(Cab(N,S)-DIC)], [Cp*M(Cab(N,S)-DCC)] (M = Ir 3?a, 3?b; Rh 3?c, 3?d), formed through BH activation, are obtained by reaction of [{Cp*MCl(2)}(2)] with carboranylamidinate sulfides [RN=C(closo-1,2-C(2)B(10)H(10))(NHR)]S(-) (R = iPr, Cy), which can be prepared by inserting sulfur into the C-Li bond of lithium carboranylamidinates. Iridium complex 1?a shows catalytic activities of up to 2.69×10(6) g(PNB) mol(Ir)(-1) h(-1) for the polymerization of norbornene in the presence of methylaluminoxane (MAO) as cocatalyst. Catalytic activities and the molecular weight of polynorbornene (PNB) were investigated under various reaction conditions. All complexes were fully characterized by elemental analysis and IR and NMR spectroscopy; the structures of 1?a-c, 2?a, b; and 3?a, b, d were further confirmed by single crystal X-ray diffraction.  相似文献   

16.
Ruthenium(II) π‐coordination onto [28]hexaphyrins(1.1.1.1.1.1) has been accomplished. Reactions of bis‐AuIII and mono‐AuIII complexes of hexakis(pentafluorophenyl) [28]hexaphyrin with [RuCl2(p‐cymene)]2 in the presence of NaOAc gave the corresponding π‐ruthenium complexes, in which the [(p‐cymene)Ru]II fragment sat on the deprotonated side pyrrole. A similar reaction of the bis‐PdII [26]hexaphyrin complex afforded a triple‐decker complex, in which the two [(p‐cymene)Ru]II fragments sat on both sides of the center of the [26]hexaphyrin framework.  相似文献   

17.
The reaction of [(arene)MCl2]2 with pyridylpyrazolyl ligands (L1 and L2) in the presence of ammonium hexafluorophosphate leads to formation of cationic complexes having the general formula [(arene)M(L)Cl]PF6 {M?=?Ru, arene = p-cymene (1, 4); Cp*, M?=?Rh (2, 5); Cp*, M?=?Ir (3, 6); L?=?2-(1H-pyrazol-1-yl)pyridine (L1), 2-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine (L2)}. Similarly the reaction of [CpRu(PPh3)2Cl] and [(ind)Ru(PPh3)2Cl] (ind?=?η5-C9H7) with L1 and L2 yielded cationic complexes which have been formulated as [(Cp/ind)Ru(L)PPh3]PF6 (710). All these complexes were characterized by analytical and spectroscopic techniques. The pyridylpyrazolyl ligands coordinated metal through pyridyl and pyrazolyl nitrogens forming a six-membered metallacycle. The ligands as well as the complexes were evaluated for their in vitro antibacterial activity by agar well diffusion method against two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two Gram positive bacteria (Staphylococcus aureus and Bacillus thuriengiensis). Results show that the ligands and the complexes have significant antibacterial activity against Gram negative bacteria.  相似文献   

18.
Several metal complexes with a boron dipyrromethene (BODIPY)‐functionalized N‐heterocyclic carbene (NHC) ligand 4 were synthesized. The fluorescence in [( 4 )(SIMes)RuCl2(ind)] complex is quenched (Φ=0.003), it is weak in [( 4 )PdI2(Clpy)] (Φ=0.033), and strong in [( 4 )AuI] (Φ=0.70). The BODIPY‐tagged complexes can experience pronounced changes in the brightness of the fluorophore upon ligand‐exchange and ligand‐dissociation reactions. Complexes [( 4 )MX(1,5‐cyclooctadiene)] (M=Rh, Ir; X=Cl, I; Φ=0.008–0.016) are converted into strongly fluorescent complexes [( 4 )MX(CO)2] (Φ=0.53–0.70) upon reaction with carbon monoxide. The unquenching of the Rh and Ir complexes appears to be a consequence of the decreased electron density at Rh or Ir in the carbonyl complexes. In contrast, the substitution of an iodo ligand in [( 4 )AuI] by an electron‐rich thiolate decreases the brightness of the BODIPY fluorophore, rendering the BODIPY as a highly sensitive probe for changes in the coordination sphere of the transition metal.  相似文献   

19.
A series of RuII–arene complexes ( 1 – 6 ) of the general formula [(η6‐arene)Ru(L)Cl]PF6 (arene=benzene or p‐cymene; L=bidentate β‐carboline derivative, an indole alkaloid with potential cyclin‐dependent kinases (CDKs) inhibitory activities) is reported. All the complexes were fully characterized by classical analytical methods, and three were characterized by X‐ray crystallography. Hydrolytic studies show that β‐carboline ligands play a vital role in their aqueous behaviour. These complexes are highly active in vitro, with the most active complex 6 displaying a 3‐ to 12‐fold higher anticancer activity than cisplatin against several cancer cell lines. Interestingly, the complexes are able to overcome cross‐resistance to cisplatin, and show much lower cytotoxicity against normal cells. Complexes 1 – 6 may directly target CDK1, because they can block cells in the G2M phase, down‐regulate the expression of CDK1 and cyclin B1, and inhibit CDK1/cyclin B in vitro. Further mechanism studies show that the complexes can effectively induce apoptosis through mitochondrial‐related pathways and intracellular reactive oxygen species (ROS) elevation.  相似文献   

20.
A new Schiff base, (pyridin-2-yl)-N-(3,5-di(pyridin-2-yl)-4H-1,2,4-triazol-4-yl)methanimine, (L), was synthesized. Reaction of [(η6-arene)Ru(µ-Cl)Cl]2 and [Cp*M(µ-Cl)Cl]2 (M = Rh and Ir) with one equivalent of L in the presence of NH4PF6 in methanol yielded dinuclear complexes, [(η6-arene)2Ru2(L-OH)Cl](PF6)2 {arene = C6H6 (1), p-iPrC6H4Me (p-cymene) (2) and C6Me6 (3)}, and [Cp*2M2(L-OH)Cl](PF6)2 [M = Rh (4) and Ir (5)], respectively, leading to the formation of five new chiral complexes with –OH on the azomethine carbon. L is a pentadentate ligand where one of the metal centers is coordinated to two nitrogen atoms in a bidentate chelating fashion while the other metal is bonded tridentate to three nitrogen atoms. Although the ligand is neutral before coordination, after complexation it is anionic (uni-negative) with negative charge on the azo nitrogen {see the structures: N(5) in 2[PF6]2 and N(3) for 4[PF6]2}. The complexes have been characterized by various spectroscopic methods including infrared and 1H NMR and the molecular structures of the representative complexes are established by single-crystal X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号