首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Write for the cycle space of a graph G, for the subspace of spanned by the copies of the κ‐cycle in G, for the class of graphs satisfying , and for the class of graphs each of whose edges lies in a . We prove that for every odd and , so the 's of a random graph span its cycle space as soon as they cover its edges. For κ = 3 this was shown in [6].  相似文献   

2.
Classical approximation results show that any circuit of size and depth has an ‐error probabilistic polynomial over the reals of degree . We improve this upper bound to , which is much better for small values of . We then use this result to show that ‐wise independence fools circuits of size and depth up to error at most , improving on Tal's strengthening of Braverman's result that ‐wise independence suffices. To our knowledge, this is the first PRG construction for that achieves optimal dependence on the error . We also prove lower bounds on the best polynomial approximations to . We show that any polynomial approximating the function on bits to a small constant error must have degree at least . This result improves exponentially on a result of Meka, Nguyen, and Vu (Theory Comput. 2016).  相似文献   

3.
We study the q‐state ferromagnetic Potts model on the n‐vertex complete graph known as the mean‐field (Curie‐Weiss) model. We analyze the Swendsen‐Wang algorithm which is a Markov chain that utilizes the random cluster representation for the ferromagnetic Potts model to recolor large sets of vertices in one step and potentially overcomes obstacles that inhibit single‐site Glauber dynamics. Long et al. studied the case q = 2, the Swendsen‐Wang algorithm for the mean‐field ferromagnetic Ising model, and showed that the mixing time satisfies: (i) for , (ii) for , (iii) for , where βc is the critical temperature for the ordered/disordered phase transition. In contrast, for there are two critical temperatures that are relevant. We prove that the mixing time of the Swendsen‐Wang algorithm for the ferromagnetic Potts model on the n‐vertex complete graph satisfies: (i) for , (ii) for , (iii) for , and (iv) for . These results complement refined results of Cuff et al. on the mixing time of the Glauber dynamics for the ferromagnetic Potts model.  相似文献   

4.
We characterize the set of properties of Boolean‐valued functions on a finite domain that are testable with a constant number of samples (x,f(x)) with x drawn uniformly at random from . Specifically, we show that a property is testable with a constant number of samples if and only if it is (essentially) a k‐part symmetric property for some constant k, where a property is k‐part symmetric if there is a partition of such that whether satisfies the property is determined solely by the densities of f on . We use this characterization to show that symmetric properties are essentially the only graph properties and affine‐invariant properties that are testable with a constant number of samples and that for every constant , monotonicity of functions on the d‐dimensional hypergrid is testable with a constant number of samples.  相似文献   

5.
Let be the orientable surface of genus and denote by the class of all graphs on vertex set with edges embeddable on . We prove that the component structure of a graph chosen uniformly at random from features two phase transitions. The first phase transition mirrors the classical phase transition in the Erd?s‐Rényi random graph chosen uniformly at random from all graphs with vertex set and edges. It takes place at , when the giant component emerges. The second phase transition occurs at , when the giant component covers almost all vertices of the graph. This kind of phenomenon is strikingly different from and has only been observed for graphs on surfaces.  相似文献   

6.
For graphs G and F, write if any coloring of the edges of G with colors yields a monochromatic copy of the graph F. Suppose is obtained from a graph S with s vertices and maximum degree d by subdividing its edges h times (that is, by replacing the edges of S by paths of length h + 1). We prove that there exists a graph G with no more than edges for which holds, provided that . We also extend this result to the case in which Q is a graph with maximum degree d on q vertices with the property that every pair of vertices of degree greater than 2 are distance at least h + 1 apart. This complements work of Pak regarding the size Ramsey number of “long subdivisions” of bounded degree graphs.  相似文献   

7.
We investigate the asymptotic structure of a random perfect graph Pn sampled uniformly from the set of perfect graphs on vertex set . Our approach is based on the result of Prömel and Steger that almost all perfect graphs are generalised split graphs, together with a method to generate such graphs almost uniformly. We show that the distribution of the maximum of the stability number and clique number is close to a concentrated distribution L(n) which plays an important role in our generation method. We also prove that the probability that Pn contains any given graph H as an induced subgraph is asymptotically 0 or or 1. Further we show that almost all perfect graphs are 2‐clique‐colorable, improving a result of Bacsó et al. from 2004; they are almost all Hamiltonian; they almost all have connectivity equal to their minimum degree; they are almost all in class one (edge‐colorable using Δ colors, where Δ is the maximum degree); and a sequence of independently and uniformly sampled perfect graphs of increasing size converges almost surely to the graphon .  相似文献   

8.
We count orientations of avoiding certain classes of oriented graphs. In particular, we study , the number of orientations of the binomial random graph in which every copy of is transitive, and , the number of orientations of containing no strongly connected copy of . We give the correct order of growth of and up to polylogarithmic factors; for orientations with no cyclic triangle, this significantly improves a result of Allen, Kohayakawa, Mota, and Parente. We also discuss the problem for a single forbidden oriented graph, and state a number of open problems and conjectures.  相似文献   

9.
We show that for every there exists C > 0 such that if then asymptotically almost surely the random graph contains the kth power of a Hamilton cycle. This determines the threshold for appearance of the square of a Hamilton cycle up to the logarithmic factor, improving a result of Kühn and Osthus. Moreover, our proof provides a randomized quasi‐polynomial algorithm for finding such powers of cycles. Using similar ideas, we also give a randomized quasi‐polynomial algorithm for finding a tight Hamilton cycle in the random k‐uniform hypergraph for . The proofs are based on the absorbing method and follow the strategy of Kühn and Osthus, and Allen et al. The new ingredient is a general Connecting Lemma which allows us to connect tuples of vertices using arbitrary structures at a nearly optimal value of p. Both the Connecting Lemma and its proof, which is based on Janson's inequality and a greedy embedding strategy, might be of independent interest.  相似文献   

10.
For each , we show that any graph G with minimum degree at least has a fractional Kr‐decomposition. This improves the best previous bounds on the minimum degree required to guarantee a fractional Kr‐decomposition given by Dukes (for small r) and Barber, Kühn, Lo, Montgomery, and Osthus (for large r), giving the first bound that is tight up to the constant multiple of r (seen, for example, by considering Turán graphs). In combination with work by Glock, Kühn, Lo, Montgomery, and Osthus, this shows that, for any graph F with chromatic number , and any , any sufficiently large graph G with minimum degree at least has, subject to some further simple necessary divisibility conditions, an (exact) F‐decomposition.  相似文献   

11.
In this paper, we introduce a model of depth‐weighted random recursive trees, created by recursively joining a new leaf to an existing vertex . In this model, the probability of choosing depends on its depth in the tree. In particular, we assume that there is a function such that if has depth then its probability of being chosen is proportional to . We consider the expected value of the diameter of this model as determined by , and for various increasing we find expectations that range from polylogarithmic to linear.  相似文献   

12.
We discuss the length of the longest directed cycle in the sparse random digraph , constant. We show that for large there exists a function such that a.s. The function where is a polynomial in . We are only able to explicitly give the values , although we could in principle compute any .  相似文献   

13.
We study approximate decompositions of edge‐colored quasirandom graphs into rainbow spanning structures: an edge‐coloring of a graph is locally ‐bounded if every vertex is incident to at most edges of each color, and is (globally) ‐bounded if every color appears at most times. Our results imply the existence of: (1) approximate decompositions of properly edge‐colored into rainbow almost‐spanning cycles; (2) approximate decompositions of edge‐colored into rainbow Hamilton cycles, provided that the coloring is ‐bounded and locally ‐bounded; and (3) an approximate decomposition into full transversals of any array, provided each symbol appears times in total and only times in each row or column. Apart from the logarithmic factors, these bounds are essentially best possible. We also prove analogues for rainbow ‐factors, where is any fixed graph. Both (1) and (2) imply approximate versions of the Brualdi‐Hollingsworth conjecture on decompositions into rainbow spanning trees.  相似文献   

14.
15.
We consider supercritical bond percolation on a family of high‐girth ‐regular expanders. The previous study of Alon, Benjamini and Stacey established that its critical probability for the appearance of a linear‐sized (“giant”) component is . Our main result recovers the sharp asymptotics of the size and degree distribution of the vertices in the giant and its 2‐core at any . It was further shown in the previous study that the second largest component, at any , has size at most for some . We show that, unlike the situation in the classical Erd?s‐Rényi random graph, the second largest component in bond percolation on a regular expander, even with an arbitrarily large girth, can have size for arbitrarily close to 1. Moreover, as a by‐product of that construction, we answer negatively a question of Benjamini on the relation between the diameter of a component in percolation on expanders and the existence of a giant component. Finally, we establish other typical features of the giant component, for example, the existence of a linear path.  相似文献   

16.
We consider the following basic geometric problem: Given , a 2‐dimensional black‐and‐white figure is ?far from convex if it differs in at least an ? fraction of the area from every figure where the black object is convex. How many uniform and independent samples from a figure that is ?far from convex are needed to detect a violation of convexity with constant probability? This question arises in the context of designing property testers for convexity. We show that uniform samples (and the same running time) are necessary and sufficient for detecting a violation of convexity in an ?‐far figure and, equivalently, for testing convexity of figures with 1‐sided error. Our algorithm beats the lower bound by Schmeltz [32] on the number of samples required for learning convex figures under the uniform distribution. It demonstrates that, with uniform samples, we can check if a set is approximately convex much faster than we can find an approximate representation of a convex set.  相似文献   

17.
We prove packing and counting theorems for arbitrarily oriented Hamilton cycles in (n, p) for nearly optimal p (up to a factor). In particular, we show that given t = (1 ? o(1))np Hamilton cycles C1,…,Ct, each of which is oriented arbitrarily, a digraph ~(n, p) w.h.p. contains edge disjoint copies of C1,…,Ct, provided . We also show that given an arbitrarily oriented n‐vertex cycle C, a random digraph ~(n, p) w.h.p. contains (1 ± o(1))n!pn copies of C, provided .  相似文献   

18.
The size Ramsey number of two graphs and is the smallest integer such that there exists a graph on edges with the property that every red-blue colouring of the edges of yields a red copy of or a blue copy of . In 1981, Erdős observed that and he conjectured that this upper bound on is sharp. In 1983, Faudree and Sheehan extended this conjecture as follows: They proved the case . In 2001, Pikhurko showed that this conjecture is not true for and , by disproving the mentioned conjecture of Erdős. Here, we prove Faudree and Sheehan's conjecture for a given and .  相似文献   

19.
Let be the Ramsey number of an -uniform loose cycle of length versus an -uniform clique of order . Kostochka et al. showed that for each fixed , the order of magnitude of is up to a polylogarithmic factor in . They conjectured that for each we have . We prove that , and more generally for every that . We also prove that for every and , if is odd, which improves upon the result of Collier-Cartaino et al. who proved that for every and we have .  相似文献   

20.
We prove the endpoint case of a conjecture of Khot and Moshkovitz related to the unique games conjecture, less a small error. Let n ≥ 2. Suppose a subset Ω of n‐dimensional Euclidean space satisfies ?Ω = Ωc and Ω + v = Ωc (up to measure zero sets) for every standard basis vector . For any and for any q ≥ 1, let and let . For any x?Ω, let N(x) denote the exterior normal vector at x such that ‖N(x)‖2 = 1. Let . Our main result shows that B has the smallest Gaussian surface area among all such subsets Ω, less a small error: In particular, Standard arguments extend these results to a corresponding weak inequality for noise stability. Removing the factor 6 × 10?9 would prove the endpoint case of the Khot‐Moshkovitz conjecture. Lastly, we prove a Euclidean analogue of the Khot and Moshkovitz conjecture. The full conjecture of Khot and Moshkovitz provides strong evidence for the truth of the unique games conjecture, a central conjecture in theoretical computer science that is closely related to the P versus NP problem. So, our results also provide evidence for the truth of the unique games conjecture. Nevertheless, this paper does not prove any case of the unique games conjecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号