首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkylferrocene‐based burning‐rate catalysts (BRCs) show conspicuous migration tendency and volatility during prolonged storage and fabrication process of a composite solid propellant. To enhance anti‐migration ability of the BRCs, forty novel ionic coordination compounds, [M(L)4(H2O)2]mXn (M = Mn2+, Co2+, Cu2+, Ni2+, Zn2+, Fe2+, Pb2+, Cr3+, Bi3+, or Cd2+; L = ferrocenylmethyl imidazole or ferrocenylmethyl‐1,2,4‐triazole; X = picrate or trinitroresorcinolate), were synthesized and characterized by FT‐IR, UV/Vis, and elementary analysis. Additionally, the crystal structures of six compounds were confirmed by single‐crystal X‐ray diffraction. The TG analyses revealed that the new compounds show high thermal stability. Cyclic voltammetry studies suggested that theyare irreversible redox systems. Their catalytic activities in the thermal degradation of ammonium perchlorate (AP), 1,3,5‐trinitro‐1,3,5‐triazacyclo‐hexane (RDX) and 1,2,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane (HMX) were examined by DSC technique. The results indicated that all the new compounds exert great effects on the thermal decomposition of AP and RDX, among them some compounds are more active than catocene. Compound 26 has good catalytic ability in the thermal decomposition of HMX, representing a rare example of the reported ferrocene‐based BRCs which show catalytic activity during combustion of HMX.  相似文献   

2.
Nine new coordination compounds have been synthesized by the reaction of salts of bivalent metal ions (a=ZnII, b=CuII, c=NiII, d=CoII) with the bis(benzoylhydrazone) derivative of 4,6‐diacetylresorcinol (H4L). Three kinds of complexes have been obtained: homodinuclear compounds [M2(H2L)2]?nH2O ( 1 a , 1 b , 1 c , and 1 d ), homotetranuclear compounds [M4(L)2]?n(solv) ( 2 a and 2 c ), and heterotetranuclear compounds [Zn2M2(L)2]?n(solv) ( 2 ab , 2 ac , and 2 ad ). The structures of the free ligand H4L?2 DMSO and its complexes [Zn2(H2L)2(DMSO)2] ( 1 a* ), [Zn4(L)2(DMSO)6] ( 2 a* ), and [Zn0.45Cu3.55(L)2(DMSO)6]?2 DMSO ( 2 ab* ) were elucidated by single‐crystal X‐ray diffraction. The ligand shows luminescence properties and its fluorimetric behavior towards MII metals (M=Zn, Cu, Ni and Co) has been studied. Furthermore, the solid‐state luminescence properties of the ligand and compounds have been determined at room temperature. 1H NMR spectroscopic monitoring of the reaction of H4L with ZnII showed the deprotonation sequence of the OH/NH groups upon metal coordination. Heteronuclear reactions have also been monitored by using ESI‐MS and spectrofluorimetric techniques.  相似文献   

3.
The title compounds, bis­(di­methyl­form­amide)‐1κO,3κO‐bis{μ‐2,2′‐[2,2′‐di­methyl­propane‐1,3‐diyl­bis­(nitrilo­methylidyne)]­diphenolato}‐1κ4N,N′,O,O′:2κ2O,O′;2κ2O,O′:3κ4N,N′,O,O′‐di‐μ‐nitrito‐1:2κ2N:O;2:3κ2O:N‐dinickel(II)­cobalt(II), [CoNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (I), ‐copper(II), [CuNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (II), and ‐manganese(II), [MnNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (III), consist of centrosymmetric linear heterotrinuclear metal complexes. The three complexes are isostructural. There are three bridges across the Ni–M atom pairs (M is Co2+, Cu2+ or Mn2+) in each complex, involving two O atoms of a μ‐N,N′‐bis­(salicyl­idene)‐2,2′di­methyl‐1,3‐propane­diaminate ligand and an N—O moiety of a μ‐nitrito group. The coordination sphere around each metal atom, whether Co2+, Cu2+, Mn2+ or Ni2+, can be described as distorted octahedral. The Ni?M distances are 2.9988 (5) Å in (I), 2.9872 (5) Å in (II) and 3.0624 (8) Å in (III).  相似文献   

4.
Luminescent cuprous complexes are an important class of coordination compounds due to their relative abundance, low cost and ability to display excellent luminescence. The title ionic trinuclear Cu3I2 complex, tris[μ2‐diphenyl(pyridin‐2‐yl)phosphane‐κ2P:N]di‐μ3‐iodido‐tricopper(I)(3 CuCu) hexafluoridophosphate, [Cu3I2(C39H32NP)3]PF6, conventionally abbreviated as [Cu3I2(Ph2PPy)3]PF6, is described. Each CuI atom is coordinated by two μ3‐iodide ligands and by a P and an N atom from two Ph2PPy ligands, giving rise to a CuI2PN tetrahedral coordination geometry about each CuI centre. The electronic absorption and photoluminescence properties of this trinuclear cluster have been studied on as‐synthesized samples, which had been examined previously by powder X‐ray diffraction. A detailed time‐dependent density functional theory (TD–DFT) study was carried out and showed a green emission derived from a halide‐to‐ligand charge transfer and metal‐to‐ligand charge transfer 3(X+M)LCT excited state.  相似文献   

5.
Neutron structure determinations have been made of Tutton's salts, X2[M(H2O)6] (YO4)2, where Y = Se, X = K+, M = Cu2+; Y = S, X = K+, M = Ni2+, Cu2+, Zn2+; X = Rb+, Cs+, M = Cu2+. This work has shown that there are extensive hydrogen networks with almost linear hydrogen bonds from [M(H2O)6]2+ to (YO4)2?. The (H … O) distance increases in the Cu2+ series for X = K+ to Cs+ but there is no difference for the potassium copper salts when Y = Se or S. Three different distorted [M(H2O)6]2+ octahedra were found in the series (orthorhombic, tetragonal with two long and four short, or four long and two short bonds). The interatomic distances from X+ to the neighboring O in a distorted XO8+ dodecahedron increases with increased cation size, implying that the X+ polyhedron is maintaining its shape.  相似文献   

6.
By using a linear tetraphosphine, meso‐bis[(diphenylphosphinomethyl)phenylphosphino]methane (dpmppm), nona‐ and hexadecanuclear copper hydride clusters, [Cu9H7(μ‐dpmppm)3]X2 (X=Cl ( 1 a ), Br ( 1 b ), I ( 1 c ), PF6 ( 1 d )) and [Cu16H14(μ‐dpmppm)4]X2 (X2=I2 ( 2 c ), (4/3) PF6?(2/3) OH ( 2 d )) were synthesized and characterized. They form copper‐hydride cages of apex‐truncated supertetrahedral {Cu9H7}2+ and square‐face‐capped cuboctahedral {Cu16H14}2+ structures. The hydride positions were estimated by DFT calculations to be facially dispersed around the copper frameworks. A kinetically controlled synthesis gave an unsymmetrical Cu8H6 cluster, [Cu8H6(μ‐dpmppm)3]2+ ( 3 ), which readily reacted with CO2 to afford linear Cu4 complexes with formate bridges, leading to an unprecedented hydrogenation of CO2 into formate catalyzed by {Cu4(μ‐dpmppm)2} platform. The results demonstrate that new motifs of copper hydride clusters could be established by the tetraphosphine ligands, and the structures influence their reactivity.  相似文献   

7.
Polypyridyl multidentate ligands based on ethylenediamine backbones are important metal‐binding agents with applications in biomimetics and homogeneous catalysis. The seemingly hexadentate tpena ligand [systematic name: N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetate] reacts with zinc chloride and zinc bromide to form trichlorido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2(C22H24N5O2)Cl3], and tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2Br3(C22H24N5O2)]. One ZnII ion shows the anticipated N5O coordination in an irregular six‐coordinate site and is linked by an anti carboxylate bridge to a tetrahedral ZnX3 (X = Cl or Br) unit. In contrast, the CuII ions in aquatribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–water (1/1/6.5) [Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2O, occupy two tpena‐chelated sites, one a trigonal bipyramidal N3Cl2 site and the other a square‐planar N2OCl site. In all three cases, electrospray ionization mass spectra were dominated by a misleading ion assignable to [M(tpena)]+ (M = Zn2+ and Cu2+).  相似文献   

8.
Two new trinuclear complexes [CuII(NiIIX1)2(C2H5OH)2]· (ClO4)2·2(CH3OH) ( 1 ) and [CuII(NiIIX2)2(H2O)]·(ClO4)2· 0.75(H2O) ( 2 ) (X1 = dianion of 5,6;13,14‐dibenzo‐7,12‐bis(ethoxycarboxyl)‐9‐methyl‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca‐7,11‐diene. X2 = dianion of 5,6;13,14‐dibenzo‐9,10‐cyclohexano‐7,12‐bis(ethoxycarboxyl)‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca7,11‐diene.) have been synthesized and characterized by single crystal X‐ray analysis, elemental analysis, IR, UV and EPR spectroscopies. The complexes consist of NiIICuIINiII heteronuclear cationic entities. The central CuII atom of 1 lies in an octahedral coordination environment, while that of 2 resides in a square‐pyramidal coordination sphere. The adjacent trinuclear units of 1 are linked together through π‐π stacking interactions resulting in a 1D supramolecular chain, whereas the π‐π stacking interactions between the contiguous units of 2 lead to a 2D structure. The EPR spectra of the two complexes show a signal of an axially elongated octahedral CuII system in 1 and an axially elongated square‐pyramidal CuII system in 2 , respectively. The hyperfine splitting of the CuII atoms (ICu = 3/2) has also been observed in the EPR spectra.  相似文献   

9.
The reaction of the ‘oximato’‐ligand precursor A (Fig. 1) and metal salts with KCN gave two mononuclear complexes [ML(CN)(H2O)n](ClO4) ( 1 and 2 ; L={N‐(hydroxy‐κO)‐α‐oxo‐N′‐[(pyridin‐2‐yl‐κN)methyl[1,1′‐biphenyl]‐4‐ethanimidamidato‐κN′}; M=CoII ( 1 ), CuII ( 2 ); n=2 for CoII, n=0 for CuII; Figs. 2 and 3). The new cyano‐bridged pentanuclear ‘oximato’ complexes [{ML(H2O)n(NC)}4M1(H2O)x](ClO4)2 ( 3 – 6 ) and trinuclear complexes [{ML(H2O)n(NC)}2M1L](ClO4) ( 7 – 10 ) ([M1=MnII, CuII; x=2 for MnII, x=0 for CuII] were synthesized from mononuclear complexes and characterized by elemental analyses, magnetic susceptibility, molar conductance, and IR and thermal analysis. The four [ML(CN)(H2O)n]+ moieties are connected by a metal(II) ion in the pentanuclear complexe 3 – 6 , each one involving four cyano bridging ligands (Fig. 4). The central metal ion displays a square‐planar or octahedral geometry, with the cyano bridging ligands forming the equatorial plane. The axial positions are occupied by two aqua ligands in the case of the central Mn‐atom. The two [ML(CN)(H2O)n]+ moieties and an ‘oximato’ ligand are connected by a metal(II) ion in the trinuclear complexes 7 – 10 , each one involving two cyano bridging ligands (Fig. 5). The central metal ions display a distorted square‐pyramidal geometry, with two cyano bridging ligands and the donor atoms of the tridentate ‘oximato’ ligand. Moreover catalytic activities of the complexes for the disproportionation of hydrogen peroxide (H2O2) were also investigated in the presence of 1H‐imidazole. The synthesized homopolynuclear CuII complexes 6 and 10 displayed eficiency in disproportion reactions of H2O2 producing H2O and dioxygen thus showing catalase‐like activity.  相似文献   

10.
The reaction of [M(L)]Cl2 · 2H2O (M = Ni2+ and Cu2+, L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with 1,1-cyclopropanedicarboxylic acid (H2-cpdc) generates one-dimensional hydrogen-bonded infinite chains [Ni(L)(H-cpdc)2] (1) and [Cu(L)(H-cpdc)2] (2) (H-cpdc = cyclopropane-1-carboxylic acid-1-carboxylate). These complexes have been characterized by X-ray crystallography, spectroscopy, and cyclic voltammetry. The crystal structures of (1) and (2) show a distorted octahedral coordination geometry around the metal ion, with four secondary amines and two oxygen atoms of the H-cpdc ligand at the trans position. Complexes (1) and (2) display the one-dimensional hydrogen-bonded infinite chains. The cyclic voltammogram of the complexes display two one-electron waves corresponding to MII/MIII and MII/MI processes. The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the axial H-cpdc ligand.  相似文献   

11.
Treatment of copper(I) halides CuX (X = Cl, Br, I) with lithium 2‐(diphenylphosphanyl)anilide [Li(HL)] in THF led to the formation of hexanuclear copper(I) complexes [Cu6X2(HL)4] [X = Cl ( 1 ), Br ( 2 ), I ( 3 )]. In compounds 1 – 3 , the copper atoms are in a distorted octahedral arrangement and the amide ligands adopt a μ3‐κP,κ2N bridging mode. Additionally there are two μ2‐bridging halide ligands. Each of the [Cu6X2(HL)4] clusters comprises two copper atoms, which are surrounded by two amide nitrogen atoms in an almost linear coordination [Cu–N: 186.2(3)–188.0(3) pm] and four copper atoms, which are connected to an amide N atom, a P atom, and a halogen atom in a distorted trigonal planar fashion [Cu–N: 199.6(3)–202.3(3) pm)].  相似文献   

12.
The acidic properties and the catalytic activity of 12-molybdophosphates (M x/n n+ H3-x PMo12O40;M = Cu2+, Bi3+, Cr3+ andX=1–3) have been studied. The results are discussed as the effect of these catalyst components on the partial charge on oxygen atom which is in a relation with the acidity. It is shown that the oxygen-hydrogen bond is weakened as the value of partial charge on oxygen (– 0) becomes more negative, while the vapor-phase dehydration activity of 2-propanol was explained on the basis of the reacting zone wideness taking into account the pseudo liquid phase nature of the heteropoly compounds. A correlation of the percentage conversion of 2-propanol with the fractional charge on the molybdenum atom was successful to interpret the effect of the redox properties of these catalysts on their catalytic activity.
Auswirkung der Salzbildung auf die bifunktionelle Natur der 12-Molybdänphosphorsäure und ihre Beziehung zur katalytischen AKtivität
Zusammenfassung Es wurden die sauren Eigenschaften und die katalytische Aktivität von 12-Molybdänphosphaten (M x/n n+ H3-x PMo12O40;M = Cu2+, Bi3+, Cr3+ andX=1–3) untersucht. Die Ergebnisse werden bezüglich der Partialladung am Sauerstoffatom diskutiert, wobei gezeigt wird, daß die Sauerstoff—Wasserstoff-Bindung mit negativerem Sauerstoff schwächer wird, während die katalytische Dampfphasen-Dehydrierungsaktivität an 2-Propanol mit der Reaktionszone der pseudoflüssigen Struktur der Heteropolyverbindungen in Zusammenhang gebracht werden kann. Die Redox-Eigenschaften der Katalysatoren beim prozentuellen Umsatz der Reaktion von 2-Propanol sind direkt mit der fraktionellen Ladung am Molybdänatom zu korrelieren.
  相似文献   

13.
Density functional calculations on trinuclear complexes bridged by two sulfur atoms, [(tmeda)3Cu3(μ‐S)2]3+, [(tmeda)3Ni3(μ‐S)2]2+, and [(tmeda)3Ni3(μ‐S2)]4+, as well as on the formation of [(tmeda)3Cu3(μ‐S)2]3+ from a dinuclear [(tmeda)2Cu2(μ‐S2)]2+ complex and a mononuclear [(tmeda)Cu(η2‐S2)]+ fragment, are reported. A qualitative orbital analysis of the M3X2 framework bonding is presented for the case in which each metal atom M has a square planar coordination sphere completed by one bidentate or two monodentate ligands (that is, [(L2M)3X2] compounds). It is concluded that a framework electron count (FEC) of 12 corresponds to systems with six M? X bonds but no X? X bond through the cage, while an FEC of 10 favors the formation of an X? X bond. Framework electron counting rules are also presented for related M3X2 cores in [(L5M)3X2] complexes, based on a qualitative molecular orbital (MO) analysis supported by DFT calculations on [(OC)15Cr3(μ‐As2)].  相似文献   

14.
A novel azo dye ligand, namely 1‐[(5‐mercapto‐1H‐1,2,4‐triazole‐3‐yl)diazenyl]naphthalen‐2‐ol (HL), was synthesized. Mn2+, Co2+, Ni2+, Cu2+ and UO22+ complexes were also prepared by the treatment of HL with Mn(CH3COO)2?4H2O, Co(CH3COO)2?4H2O, Ni(CH3COO)2?4H2O, Cu(CH3COO)2?H2O, CuCl2?2H2O, Cu(NO3)2?6H2O and UO2(NO3)2?6H2O. The structures of these metal chelates were confirmed using elemental, spectral, magnetic moment, molar conductance and thermal analyses. The analytical data confirmed the formation of the chelates in 1:1 (metal‐to‐ligand) ratio having the formula [ML(H2O)X]Y?H2O, where M is Mn2+, Co2+, Ni2+, Cu2+ or UO22+; X is Cl?, NO3? or CH3COO?; and Y is H2O. The azo compound acts in a monobasic bidentate manner via the nitrogen and oxygen atoms of azo and hydroxyl groups, respectively. All complexes were found to have tetrahedral structures, except the UO22+ complex that showed octahedral geometry. The mode of interaction between the synthesized complexes and calf thymus DNA was explored by the aid of absorption spectroscopy and viscosity measurements. The azo dye and its chelates were evaluated against the growth of various bacterial and fungal strains (Escherichia coli, Staphylococcus aureus, Aspergillus flavus and Candida albicans) with insight gained into the effect of type of metal centre, type of coordinated anion and position of the metal in the periodic table on the activity of the complexes. The geometric structure of the complexes was optimized using molecular modelling. The in vitro cytotoxicity of the synthesized compounds was tested against HEPG2 cell line.  相似文献   

15.
The dihalomethanes CH2X2 (X=Cl, Br, I) were co‐crystallized with the isocyanide complexes trans‐[MXM2(CNC6H4‐4‐XC)2] (M=Pd, Pt; XM=Br, I; XC=F, Cl, Br) to give an extended series comprising 15 X‐ray structures of isostructural adducts featuring 1D metal‐involving hexagon‐like arrays. In these structures, CH2X2 behave as bent bifunctional XB/XB‐donating building blocks, whereas trans‐[MXM2(CNC6H4‐4‐XC)2] act as a linear XB/XB acceptors. Results of DFT calculations indicate that all XCH2–X???XM–M contacts are typical noncovalent interactions with estimated strengths in the range of 1.3–3.2 kcal mol?1. A CCDC search reveals that hexagon‐like arrays are rather common but previously overlooked structural motives for adducts of trans‐bis(halide) complexes and halomethanes.  相似文献   

16.
The title complexes, [M(C5O5)(C12H8N2)2], with M = CoII, NiII and CuII, all lie across twofold rotation axes, around which two 1,10‐phenanthroline ligands are arranged in a chiral propeller manner. The CoII and NiII complexes are isostructural, with octa­hedral coordination geometry, while the local geometry of the CuII complex is severely distorted from octa­hedral.  相似文献   

17.
Four three‐dimensional heterometallic coordination polymers, [Ln2Cu4I3(IN)7(H2O)]n ( 1 , 2 ) and [LnCu3.5I3(IN)3.5(H2O)3]n · nH2O ( 3 , 4 ) [HIN = isonicotinic acid, Ln = Nd ( 1 ), Gd ( 2 ), La ( 3 ), Eu ( 4 )] were hydrothermally synthesized by using lanthanide oxides, isonicotinic acid, copper chloride, and potassium iodide. The different molar ratio of raw materials results in two distinct types of three‐dimensional frameworks of compounds 1 – 4 . The structure of compounds 1 and 2 are constructed by the layer modules of [Ln2(IN)7(H2O)]nn– and Cu4I3 clusters, whereas that of compounds 3 and 4 are built by dimeric Ln2(IN)6(H2O)6 and layered polymeric [Cu7I6]nn+ units.  相似文献   

18.
Two new Keggin templated supramolecular compounds, [Zn2(H2biim)5(SiM12O40)] · 4H2O [M = W ( 1 ), Mo ( 2 )] (H2biim = 2, 2′‐biimidazole), were synthesized under hydrothermal conditions by using the ligand 2, 2′‐biimidazole. They were characterized by single‐crystal X‐ray diffraction, elemental analyses, IR and photoluminescence spectroscopy as well as cyclic voltammetry. The two isostructural compounds are constructed by two discrete supramolecular moieties: the inorganic chains consist of Keggin anions and metal‐organic chains constructed by [Zn2(H2biim)5]4+ subunits. In the dinuclear [Zn2(H2biim)5]4+ subunit, the H2biim ligands exhibit a dual role, chelating and linking. The metal‐organic chains further construct a 3D supramolecular framework with channels, in which the Keggin‐based inorganic chains are accommodated. The electrochemical behaviors of compounds 1 and 2 bulk‐modified carbon paste electrodes ( 1 ‐CPE, 2 ‐CPE) were studied.  相似文献   

19.
We report a series of 3d–4f complexes {Ln2Cu3(H3L)2Xn} (X=OAc?, Ln=Gd, Tb or X=NO3?, Ln=Gd, Tb, Dy, Ho, Er) using the 2,2′‐(propane‐1,3‐diyldiimino)bis[2‐(hydroxylmethyl)propane‐1,3‐diol] (H6L) pro‐ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2Cu3(H3L)2Xn} complexes is seen by changing the auxiliary ligands (X=OAc? for NO3?). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu‐based single‐molecule magnet. Ab initio CASSCF calculations performed on mononuclear TbIII models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the TbIII coordination environment (C4v versus Cs).  相似文献   

20.
The reaction of 4‐(1,2,4‐triazol‐4‐yl)ethanesulfonate ( L ) with Zn2+, Cu2+, Ni2+, Co2+, and Fe2+ gave a series of analogous neutral trinuclear complexes with the formula [M3(μ‐ L )6(H2O)6] ( 1 – 5 ). These compounds were characterized by single‐crystal X‐ray diffraction, thermogravimetry, and elemental analysis. The magnetic properties of compounds 2 – 5 were studied. Complexes 2 – 4 show weak antiferromagnetic superexchange, with J values of ?0.33 ( 2 ), ?9.56 ( 3 ), and ?4.50 cm?1 ( 4 ) (exchange Hamiltonian H=?2 J (S1S2+S2S3)). Compound 5 shows two additional crystallographic phases ( 5 b and 5 c ) that can be obtained by dehydration and/or thermal treatment. These three phases exhibit distinct magnetic behavior. The Fe2+ centers in 5 are in high‐spin (HS) configuration at room temperature, with the central one exhibiting a non‐cooperative gradual spin transition below 250 K with T1/2=150 K. In 5 b , the central Fe2+ stays in its low‐spin (LS) state at room temperature, and cooperative spin transition occurs at higher temperatures and with the appearance of memory effect (T1/2↑=357 K and T1/2↓=343 K). In the case of 5 c , all iron centers remain in their HS configuration down to very low temperatures, with weak antiferromagnetic coupling (J=?1.16 cm?1). Compound 5 b exhibits spin transition with memory effect at the highest temperature reported, which matches the remarkable features of coordination polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号