首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Tandem Friedel‐Crafts (FC) and C?H/C?O coupling reactions catalyzed by tris(pentafluorophenyl) borane (B(C6F5)3) were achieved without using any other additive in the absence of solvent. This process can be used for the reactions between a series of dialkylanilines and vinyl ethers with good isolated yields of bis(4‐dialkylaminophenyl) compounds. Based on combined theoretical and experimental studies, the possible reaction mechanism was proposed. B(C6F5)3 can activate the C=C and C?O bond for FC and C?H/C?O coupling reactions respectively. The FC reaction is slow, which is followed by a fast C?H/C?O coupling.  相似文献   

2.
The chlorination of Si−H bonds often requires stoichiometric amounts of metal salts in conjunction with hazardous reagents, such as tin chlorides, Cl2, and CCl4. The catalytic chlorination of silanes often involves the use of expensive transition‐metal catalysts. By a new simple, selective, and highly efficient catalytic metal‐free method for the chlorination of Si−H bonds, mono‐, di‐, and trihydrosilanes were selectively chlorinated in the presence of a catalytic amount of B(C6F5)3 or Et2O⋅B(C6F5)3 and HCl with the release of H2 as a by‐product. The hydrides in di‐ and trihydrosilanes could be selectively chlorinated by HCl in a stepwise manner when Et2O⋅B(C6F5)3 was used as the catalyst. A mechanism is proposed for these catalytic chlorination reactions on the basis of competition experiments and density functional theory (DFT) calculations.  相似文献   

3.
Catalytic amounts of B(C6F5)3 promote the ring opening and subsequent isomerization of a series of unactivated cyclopropanes to afford terminal olefins in good yields when a hydrosilane and 2,6‐dibromopyridine are employed as additives.  相似文献   

4.
The silver‐catalyzed oxidative C(sp3)−H/P−H cross‐coupling of 1,3‐dicarbonyl compounds with H‐phosphonates, followed by a chemo‐ and regioselective C(sp3)−C(CO) bond‐cleavage step, provided heavily functionalized β‐ketophosphonates. This novel method based on a readily available reaction system exhibits wide scope, high functional‐group tolerance, and exclusive selectivity.  相似文献   

5.
The hydrogenation of oximes and oxime ethers is usually hampered by N? O bond cleavage, hence affording amines rather than hydroxylamines. The boron Lewis acid B(C6F5)3 is found to catalyze the chemoselective hydrogenation of oxime ethers at elevated or even room temperature under 100 bar dihydrogen pressure. The use of the triisopropylsilyl group as a protecting group allows for facile liberation of the free hydroxylamines.  相似文献   

6.
This work showcases a new catalytic cyclization reaction using a highly Lewis acidic borane with concomitant C−H or C−C bond formation. The activation of alkyne‐containing substrates with B(C6F5)3 enabled the first catalytic intramolecular cyclizations of carboxylic acid substrates using this Lewis acid. In addition, intramolecular cyclizations of esters enable C−C bond formation as catalytic B(C6F5)3 can be used to effect formal 1,5‐alkyl migrations from the ester functional groups to unsaturated carbon–carbon frameworks. This metal‐free method was used for the catalytic formation of complex dihydropyrones and isocoumarins in very good yields under relatively mild conditions with excellent atom efficiency.  相似文献   

7.
8.
Upon exposure to a catalytic amount of [RhCl(CO)2]2 in 1,4‐dioxane, homopropargylallene‐alkynes underwent a novel cycloisomerization accompanied by the migration of the alkyne moiety of the homopropargyl functional group to produce six/five/five tricyclic compounds in good yields. A plausible mechanism was proposed on the basis of an experiment with 13C‐labeled substrate. The resulting tricyclic derivatives were further converted into the corresponding bicyclo[3.3.0] skeletons with vicinal cis dihydroxy groups.  相似文献   

9.
An intermolecular [4 + 2] cycloaddition was realized through C—C bond cleavage in the presence of Rh(I) catalyst. The selective ring opening of 2‐alkylenecyclobutanols enables the generation of active alkenylrhodium species, which underwent smooth cross addition over alkynes and (E)‐2‐nitroethenylbenzene, leading to highly substituted all‐carbon six‐membered rings in a single step and in a complete atom economy.  相似文献   

10.
A transition‐metal‐free transfer hydrogenation of 1,1‐disubstituted alkenes with cyclohexa‐1,4‐dienes as the formal source of dihydrogen is reported. The process is initiated by B(C6F5)3‐mediated hydride abstraction from the dihydrogen surrogate, forming a Brønsted acidic Wheland complex and [HB(C6F5)3]?. A sequence of proton and hydride transfers onto the alkene substrate then yields the alkane. Although several carbenium ion intermediates are involved, competing reaction channels, such as dihydrogen release and cationic dimerization of reactants, are largely suppressed by the use of a cyclohexa‐1,4‐diene with methyl groups at the C1 and C5 as well as at the C3 position, the site of hydride abstraction. The alkene concentration is another crucial factor. The various reaction pathways were computationally analyzed, leading to a mechanistic picture that is in full agreement with the experimental observations.  相似文献   

11.
Olefins and carboxylic acids are among the most important feedstock compounds. They are commonly found in natural products and drug molecules. We report a new reaction of nickel‐catalyzed decarboxylative olefin hydroalkylation, which provides a novel practical strategy for the construction of C(sp3)?C(sp3) bonds. This reaction can tolerate a variety of synthetically relevant functional groups and shows good chemo‐ and regioselectivity. It enables cross‐coupling of complex organic molecules containing olefin groups and carboxylic acid groups in a convergent fashion.  相似文献   

12.
In recent years, transition‐metal‐catalyzed C?H activation has become a key strategy in the field of organic synthesis. Rhodium complexes are widely used as catalysts in a variety of C?H functionalization reactions because of their high reactivity and selectivity. The availability of a number of rhodium complexes in various oxidation states enables diverse reaction patterns to be obtained. Regioselectivity, an important issue in C?H activation chemistry, can be accomplished by using a directing group to assist the reaction. However, to obtain the target functionalized compounds, it is also necessary to use a directing group that can be easily removed. A wide range of directed C?H functionalization reactions catalyzed by rhodium complexes have been reported to date. In this Review, we discuss Rh‐catalyzed C?H functionalization reactions that are aided by the use of a removable directing group such as phenol, amine, aldehyde, ketones, ester, acid, sulfonic acid, and N‐heteroaromatic derivatives.  相似文献   

13.
14.
A series of propargyl amides were prepared and their reactions with the Lewis acidic compound B(C6F5)3 were investigated. These reactions were shown to afford novel heterocycles under mild conditions. The reaction of a variety of N‐substituted propargyl amides with B(C6F5)3 led to an intramolecular oxo‐boration cyclisation reaction, which afforded the 5‐alkylidene‐4,5‐dihydrooxazolium borate species. Secondary propargyl amides gave oxazoles in B(C6F5)3 mediated (catalytic) cyclisation reactions. In the special case of disubstitution adjacent to the nitrogen atom, 1,1‐carboboration is favoured as a result of the increased steric hindrance (1,3‐allylic strain) in the 5‐alkylidene‐4,5‐dihydrooxazolium borate species.  相似文献   

15.
Catalytic C(sp3)−O bond cleavage promoted by B(C6F5)3 /Et3SiH proceeds preferentially with primary tosylates in the presence of primary and secondary silyl ethers and aryl ethers. This reactivity difference enables the chemoselective defunctionalization of several 1,n ‐diols, and the efficiency of the new procedure is highlighted by the selective deoxygenation of the hydroxymethyl group of an orthogonally protected carbohydrate. Tosylates with an adjacent phenyl group are cleaved with anchimeric assistance.  相似文献   

16.
17.
18.
An efficient and external oxidant‐free, Cp*CoIII‐catalyzed C(sp3)?H bond amidation of 8‐methylquinoline, using oxazolone as an efficient amidating agent, is reported for the first time under mild conditions. The reaction is selective and tolerates a variety of functional groups. Based on previous reports and experimental results, the deprotonation pathway proceeds through an external base‐assisted concerted metalation and deprotonation process.  相似文献   

19.
The rhodium(I)‐catalyzed C?C bond activation reaction of siloxyvinylcyclopropanes with diazoesters demonstrates a novel mode of C?C bond cleavage of siloxyvinvylcyclopanes. The alkene products were obtained as single E‐configured isomers in good yields. A σ,η3‐allyl rhodium complex, which has been previously proposed as the key intermediate in rhodium(I)‐catalyzed cycloaddition of vinylcyclopropanes, has been isolated and characterized by X‐ray crystallography.  相似文献   

20.
A RhI‐catalyzed three‐component reaction of tert‐propargyl alcohol, diazoester, and alkyl halide has been developed. This reaction can be considered as a carbene‐involving sequential alkyl and alkynyl coupling, in which C(sp)? C(sp3) and C(sp3)? C(sp3) bonds are built successively on the carbenic carbon atom. The RhI‐carbene migratory insertion of an alkynyl moiety and subsequent alkylation are proposed to account for the two separate C? C bond formations. This reaction provides an efficient and tunable method for the construction of all‐carbon quaternary center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号