首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homovanillic acid (HVA) and vanillylmandelic acid (VMA) are end-stage metabolites of catecholamine and are clinical biomarkers for the diagnosis of neuroblastoma. For the first time in Korea, we implemented and validated a liquid chromatography tandem mass spectrometry (LC–MS/MS) assay to measure urinary concentrations of HVA and VMA according to Clinical and Laboratory Standards Institute guidelines. Our LC–MS/MS assay with minimal sample preparation was validated for linearity, lower limit of detection (LOD), lower limit of quantification (LLOQ), precision, accuracy, extraction recovery, carryover, matrix effect, and method comparison. A total of 1209 measurements was performed to measure HVA and VMA in spot urine between October 2019 and September 2020. The relationship between the two urinary markers, HVA and VMA, was analyzed and exhibited high agreement (89.1% agreement, kappa’s k = 0.6) and a strong correlation (Pearson’s r = 0.73). To our knowledge, this is the first study to utilize LC–MS/MS for simultaneous quantitation of spot urinary HVA and VMA and analyze the clinical application of both markers on a large scale for neuroblastoma patients.  相似文献   

2.
The levels of urinary catecholamine metabolites, such as homovanillic acid (HVA) and vanillylmandelic acid, are routinely used as a clinical tool in the diagnosis and follow‐up of neuroblastoma (NB) patients. Recently, in the Clinical Pathology Laboratory Unit of G. Gaslini Children Hospital, a commercial method that employs liquid chromatography coupled to electrochemical detection (LC‐EC) has been introduced for the measurement of these metabolites in the routine laboratory practice. Using this LC‐EC method, an unknown peak could be observed only in samples derived from NB patients. To investigate the nature of this peak, we used a combination of liquid chromatography‐time‐of‐flight mass spectrometry (LC‐TOF‐MS) and liquid chromatography‐ion trap tandem mass spectrometry (LC‐IT‐MS). The first approach was used to obtain the elemental composition of the ions present in this new signal. To get additional structural information useful for the elucidation of unknown compounds, the ion trap analyzer was exploited. We were able to identify not just one, but three unknown signals in urine samples from NB patients which corresponded to three conjugated products of HVA: HVA sulfate and two glucuronoconjugate isomers. The enzymatic hydrolysis with β‐glucuronidase confirmed the proposed structures, while the selective alkaline hydrolysis allowed us to distinguish the difference between phenol‐ and acyl‐glucuronide of HVA. The latter was the unknown peak observed in LC‐EC separations of urine samples from NB patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid and highly sensitive liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method for determination of dapiprazole on rat dried blood spots and urine was developed and validated. The chromatographic separation was achieved on a reverse‐phase C18 column (250 × 4.6 mm i.d., 5 µm), using 20 mm ammonium acetate (pH adjusted to 4.0 with acetic acid) and acetonitrile (80:20, v/v) as a mobile phase at 25 °C. LC‐MS detection was performed with selective ion monitoring using target ions at m/z 326 and m/z 306 for dapiprazole and mepiprazole used as internal standard, respectively. The calibration curve showed a good linearity in the concentration range of 1–3000 ng/mL. The effect of hematocrit on extraction of dapiprazole from DBS was evaluated. The mean recoveries of dapiprazole from DBS and urine were 93.88 and 90.29% respectively. The intra‐ and inter‐day precisions were <4.19% in DBS as well as urine. The limits of detection and quantification were 0.30 and 1.10 ng/mL in DBS and 0.45 and 1.50 ng/mL in urine samples, respectively. The method was validated as per US Food and Drug Administration guidelines and successfully applied to a pharmacokinetic study of dapiprazole in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Heparan sulfate is a linear polysaccharide and serves as an important biomarker to monitor patient response to therapies for MPS III disorder. It is challenging to analyze heparan sulfate intact owing to its complexity and heterogeneity. Therefore, a sensitive, robust and validated LC–MS/MS method is needed to support the clinical studies for the quantitation of heparan sulfate in biofluids under regulated settings. Presented in this work are the results of the development and validation of an LC–MS/MS method for the quantitation of heparan sulfate in human urine using selected high‐abundant disaccharides as surrogates. During sample processing, a combination of analytical technologies have been employed, including rapid digestion, filtration, solid‐phase extraction and chemical derivatization. The validated method is highly sensitive and is able to analyze heparan sulfate in urine samples from healthy donors. Disaccharide constitution analysis in urine samples from 25 healthy donors was performed using the assay and demonstrated the proof of concept of using selected disaccharides as a surrogate for validation and quantitation.  相似文献   

5.
A high‐throughput LC–MS/MS bioanalytical method was developed and validated for the determination of hydrocortisone in mouse serum via supported liquid extraction (SLE) in a 96‐well plate format. Although sample extracts from SLE result in similar matrix effects compared with conventional liquid–liquid extraction (LLE), greater analyte extraction recovery and much higher analysis throughput for the quantitative analysis of hydrocortisone in mouse serum were obtained. The current LC‐MS/MS method was validated for a concentration range of 2.00–2000 ng/mL for hydrocortisone using a 0.100 mL volume of mouse serum. The intra‐ and inter‐day precision and accuracy of the quality control samples at low, medium and high concentration levels showed ≤12.9% CV and ?3.4–6.2% bias for the analyte in mouse serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Melatonin (MEL) and its chemical precursor N‐acetylserotonin (NAS) are believed to be potential biomarkers for sleep‐related disorders. Measurement of these compounds, however, has proven to be difficult due to their low circulating levels, especially that of NAS. Few methods offer the sensitivity, specificity and dynamic range needed to monitor MEL and its precursors and metabolites in small blood samples, such as those obtained from pediatric patients. In support of our ongoing study to determine the safety, tolerability and PK dosing strategies for MEL in treating insomnia in children with autism spectrum disorder, two highly sensitive LC‐MS/MS assays were developed for the quantitation of MEL and precursor NAS at pg/mL levels in small volumes of human plasma. A validated electrospray ionization (ESI) method was used to quantitate high levels of MEL in PK studies, and a validated nanospray (nESI) method was developed for quantitation of MEL and NAS at endogenous levels. In both assays, plasma samples were processed by centrifugal membrane dialysis after addition of stable isotopic internal standards, and the components were separated by either conventional LC using a Waters SymmetryShield RP18 column (2.1 × 100 mm, 3.5 µm) or on a polyimide‐coated, fused‐silica capillary self‐packed with 17 cm AquaC18 (3 µm, 125 Å). Quantitation was done using the SRM transitions m/z 233 → 174 and m/z 219 → 160 for MEL and NAS, respectively. The analytical response ratio versus concentration curves were linear for MEL (nanoflow LC: 11.7–1165 pg/mL, LC: 1165–116500 pg/mL) and for NAS (nanoflow LC: 11.0–1095 pg/mL). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A simple LC‐MS/MS method was developed and validated for quantitatively analyzing six classes of 26 abused drugs and metabolites in human urine: (1) illicit drugs; (2) opiates; (3) synthetic opioids; (4) sedative; (5) stimulants; and (6) γ‐aminobutyric acid analogs. All urine samples were diluted with a mixture of isotope‐labeled internal standards, hydrolyzed with β‐glucuronidase and directly injected in a gradient chromatographic run. The mobile phase was composed of 0.1% formic acid in water and 0.1% of formic acid in methanol. A 4.9 min run time using the multiplexing driver and ultra‐biphenyl column (50 × 2.1 mm, 5 µm, RESTEK) allowed all drugs to have sufficient resolution in a short elute time. The overlapping liquid chromatography runs and scheduled multiple reaction monitoring acquisition method resulted in a higher overall throughput for the system. The result was linear over the studied range (2–16,000 ng/mL) for all compounds with correlation coefficients r2 ≥ 0.995. The intra‐day and inter‐day precisions and accuracies were within 15% and recovery was between 83 and 115% for all analytes. Freeze–thaw stability for three cycles and long‐term stability (57 days, ?20°C) were established for all analytes. The cross‐validation between College of American Pathologists and in‐house was validated (0.06% ≤ bias ≤ 12.3%). The applicability of the method was examined by analyzing urine samples from chronic pain patients (n = 610). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Cases of poisoning by p‐phenylenediamine (PPD) are detected sporadically. Recently an article on the development and validation of an LC–MS/MS method for the detection of PPD and its metabolites, N‐acetyl‐p‐phenylenediamine (MAPPD) and N,N‐diacetyl‐p‐phenylenediamine (DAPPD) in blood was published. In the current study this method for detection of these compounds was validated and applied to urine samples. The analytes were extracted from urine samples with methylene chloride and ammonium hydroxide as alkaline medium. Detection was performed by LC–MS/MS using electrospray positive ionization under multiple reaction‐monitoring mode. Calibration curves were linear in the range 5–2000 ng/mL for all analytes. Intra‐ and inter‐assay imprecisions were within 1.58–9.52 and 5.43–9.45%, respectively, for PPD, MAPPD and DAPPD. Inter‐assay accuracies were within ?7.43 and 7.36 for all compounds. The lower limit of quantification was 5 ng/mL for all analytes. The method, which complies with the validation criteria, was successfully applied to the analysis of PPD, MAPPD and DAPPD in human urine samples collected from clinical and postmortem cases.  相似文献   

9.
The differences among individual eicosanoids in eliciting different physiological and pathological responses are largely unknown because of the lack of valid and simple analytical methods for the quantification of individual eicosanoids and their metabolites in serum, sputum and bronchial alveolar lavage fluid (BALF). Therefore, a simple and sensitive LC–MS/MS method for the simultaneous quantification of 34 eicosanoids in human serum, sputum and BALF was developed and validated. This method is valid and sensitive with a limit of quantification ranging from 0.2 to 3 ng/mL for the various analytes, and has a large dynamic range (500 ng/mL) and a short run time (25 min). The intra‐ and inter‐day accuracy and precision values met the acceptance criteria according to US Food and Drug Administration guidelines. Using this method, detailed eicosanoid profiles were quantified in serum, sputum and BALF from a pilot human study. In summary, a reliable and simple LC–MS/MS method to quantify major eicosanoids and their metabolites was developed and applied to quantify eicosanoids in human various fluids, demonstrating its suitability to assess eicosanoid biomarkers in human clinical trials.  相似文献   

10.
A rapid dispersive micro‐solid phase extraction (D‐μ‐SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM‐41 was used as sorbent in d ‐μ‐SPE of the azole compounds from biological fluids. Important D‐μ‐SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB‐C18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile–0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v /v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1–10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra‐ and inter‐day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3–114.8%. The MCM‐41‐D‐μ‐SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis.  相似文献   

11.
A rapid LC–MS/MS method has been developed and validated for the determination of losartan (LOS) and its metabolite losartan acid (LA) (EXP‐3174) in human plasma using multiplexing technique (two HPLC units connected to one MS/MS). LOS and LA were extracted from human plasma by SPE technique using Oasis HLB® cartridge without evaporation and reconstitution steps. Hydroflumethiazide (HFTZ) was used as an internal standard (IS). The analytes were separated on Zorbax SB C‐18 column. The mass transition [M–H] ions used for detection were m/z 421.0 → 127.0 for LOS, m/z 435.0 → 157.0 for LA, and m/z 330.0 → 239.0 for HFTZ. The proposed method was validated over the concentration range of 2.5–2000 ng/mL for LOS and 5.0–3000 ng/mL for LA with correlation coefficient ?0.9993. The overall recoveries for LOS, LA, and IS were 96.53, 99.86, and 94.16%, respectively. Total MS run time was 2.0 min/sample. The validated method has been successfully used to analyze human plasma samples for applications in 100 mg fasted and fed pharmacokinetic studies.  相似文献   

12.
Benzene, toluene, ethylbenzene, and xylene (BTEX) are a group of volatile organic compounds that are ubiquitous in the environment due to numerous anthropogenic sources. Exposure to BTEX poses a health hazard by increasing the risk for damage to multiple organs, neurocognitive impairment and birth defects. Urinary BTEX metabolites are useful biomarkers for the evaluation of BTEX exposure, because of the ease of sampling and their longer physiological half-lives compared with parent compounds. A method that utilizes LC–MS/MS was developed and validated for simultaneously monitoring of 10 urinary BTEX metabolites. During the sample preparation an aliquot of urine was diluted with an equal volume of 1% formic acid; internal standard solution was added, and then the sample was centrifuged and analyzed. The analytes were separated on the Kinetex-F5 column by applying a linear gradient, consisting of 0.1% formic acid and methanol. The method was validated according to the FDA Bioanalytical Method Validation Guidance for Industry. The mean method's accuracies of the spiked matrix were 81–122%; the inter-day precision ranged from 4 to 20%; the limits of quantitation were 0.5–2 μg/L. The method was used for the evaluation of baseline levels of urinary BTEX metabolites in 87 firefighters.  相似文献   

13.
A simple plasma extraction method coupled with liquid chromatography–tandem mass spectrometry (LC/MS/MS) detection was developed and validated for the analysis of endogenous mevalonic acid (MVA), a biomarker indicative of the rate of cholesterol biosynthesis, in human plasma samples. The analyte was extracted from the plasma matrix using a straightforward liquid–liquid sample preparation procedure. The extract supernatants were evaporated, reconstituted in aqueous solvent and injected into the LC/MS/MS system without further processing. The chromatographic separation was achieved on a reverse‐phase high‐performance liquid chromatography column. The accuracy and precision of the method was determined over the concentration range 0.25–25 ng/mL MVA from human plasma extracts in three validation batch runs. Inter‐assay precision (%CV) and accuracy (%RE) of the quality control samples were ≤7.00% (at lower limit quality control) and ≤6.10%, respectively. The sensitivity and throughput of this assay was significantly improved relative to previously published methods, resulting in smaller sample requirements and shorter analysis time. Assay results from a clinical study following the oral administration of an exploratory statin demonstrate that this procedure could potentially be used in the investigation of therapies associated with hypercholesterolemia. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Complementary and alternative medicines (CAM) can affect the pharmacokinetics of anticancer drugs by interacting with the metabolizing enzyme cytochrome P450 (CYP) 3A4. To evaluate changes in the activity of CYP3A4 in patients, levels of 1‐hydroxymidazolam in plasma are often determined with liquid chromatography–quadrupole mass spectrometry (LC‐MS/MS). However, validated LC‐MS/MS methods to determine in vitro CYP3A4 inhibition in human liver microsomes are scarce and not optimized for evaluating CYP3A4 inhibition by CAM. The latter is necessary because CAM are often complex mixtures of numerous compounds that can interfere with the selective measurement of 1‐hydroxymidazolam. Therefore, the aim was to validate and optimize an LC‐MS/MS method for the adequate determination of CYP3A4 inhibition by CAM in human liver microsomes. After incubation of human liver microsomes with midazolam, liquid–liquid extraction with tert‐butyl methyl ether was applied and dried samples were reconstituted in 50% methanol. These samples were injected onto a reversed‐phase chromatography consisting of a Zorbax Extend‐C18 column (2.1 × 150 mm, 5.0 µm particle size), connected to a triple quadrupole mass spectrometer with electrospray ionization. The described LC‐MS/MS method was validated over linear range of 1.0–500 nm for 1‐hydroxymidazolam. The results revealed good inter‐assay accuracy (≥85% and ≤115%) and within‐day and between‐day precisions (coefficient of variation ≤ 4.43%). Furthermore, the applicability of this assay for the determination of CYP3A4 inhibition in complex matrix mixtures was successfully demonstrated in an in vitro experiment in which CYP3A4 inhibition by known CAM (β‐carotene, green tea, milk thistle and St. John's wort) was determined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Evidence gathered in various studies points to the fact that haemanthamine, an isoquinoline alkaloid, has multiple medicinally interesting characteristics, including antitumor, antileukemic, antioxidant, antiviral, anticonvulsant and antimalarial activity. This work presents, for the first time, a universal LC‐MS/MS method for analysis of haemanthamine in plasma, bile and urine which has been verified in a pilot pharmacokinetic experiment on rats. Chromatographic separation was performed on a pentafluorophenyl core–shell column in gradient elution mode with a mobile phase consisting of acetonitrile–methanol–ammonium formate buffer. A sample preparation based on liquid–liquid extraction with methyl tert‐butyl ether was employed with ambelline used as an internal standard. Quantification was performed using LC‐MS‐ESI(+) in Selected Reaction Monitoring mode. The method was validated according to the European Medicines Agency guideline in a concentration range of 0.1–10 μmol/L in plasma, bile and urine. The concentration–time profiles of haemanthamine in plasma, bile and urine after a single i.v. bolus of 10 mg/kg have been described for the first time. The presented study addresses the lack of information on haemanthamine pharmacokinetics and also introduces a new universal method of haemanthamine analysis in complex biological matrices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A liquid chromatography–triple quadrupole mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of 5‐nitro‐5′‐hydroxy‐indirubin‐3′‐oxime (AGM‐130) in human plasma to support a microdose clinical trial. The method consisted of a liquid–liquid extraction for sample preparation and LC‐MS/MS analysis in the positive ion mode using TurboIonSprayTM for analysis. d3‐AGM‐130 was used as the internal standard. A linear regression (weighted 1/concentration) was used to fit calibration curves over the concentration range of 10–2000 pg/mL for AGM‐130. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 96.6% with a precision (coefficient of variation, CV) of 4.4%. For quality control samples at 30, 160 and 1600 pg/mL, the between run CV was ≤5.0 %. Between‐run accuracy ranged from 98.1 to 101.0%. AGM‐130 was stable in 50% acetonitrile for 168 h at 4°C and 6 h at room temperature. AGM‐130 was also stable in human plasma at room temperature for 6 h and through three freeze–thaw cycles. The variability of selected samples for the incurred sample reanalysis was ≤12.7% when compared with the original sample concentrations. This validated LC‐MS/MS method for determination of AGM‐130 was used to support a phase 0 microdose clinical trial. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Quantitation of Zn‐DTPA (zinc diethylenetriamene pentaacetate, a metal chelate) in complex biological matrix is extremely challenging on account of its special physiochemical properties. This study aimed to develop a robust and specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for determination of Zn‐DTPA in human plasma and urine. The purified samples were separated on Proteonavi (250 × 4.6 mm, 5 μm; Shiseido, Ginza, Tokyo, Japan) and a C18 guard column. The mobile phase consisted of methanol–2 mm ammonium formate (pH 6.3)–ammonia solution (50:50:0.015, v/v/v), flow rate 0.45 mL/min. The linear concentration ranges of the calibration curves for Zn‐DTPA were 1–100 μg/mL in plasma and 10–2000 μg/mL in urine. The intra‐ and inter‐day precisions for quality control (QC) samples were from 1.8 to 14.6% for Zn‐DTPA and the accuracies for QC samples were from −4.8 to 8.2%. This method was fully validated and successfully applied to the quantitation of Zn‐DTPA in plasma and urine samples of a healthy male volunteer after intravenous infusion administration of Zn‐DTPA. The result showed that the concentration of Zn‐DTPA in urine was about 20 times that in plasma, and Zn‐DTPA was completely (94.7%) excreted through urine in human.  相似文献   

18.
A sensitive, selective and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the quantification of gypenoside XLIX, a naturally occurring gypenoside of Gynostemma pentaphyllum in rat plasma and then validated according to the US Food and Drug Administration's Guidance for Industry: Bioanalytical Method Validation . Plasma samples were prepared by a simple solid‐phase extraction. Separation was performed on a Waters XBridgeTM BEH C18 chromatography column (4.6 × 50 mm, 2.5 μm) using a mobile phase of acetonitrile and water (62.5:37.5, v /v). Gypenoside XLIX and the internal standard gypenoside A were detected in the negative ion mode using selection reaction monitoring of the transitions at m/z 1045.6 → 913.5 and 897.5 → 765.4, respectively. The calibration curve was linear (R 2 > 0.990) over a concentration range of 10–7500 ng/mL with the lower quantification limit of 10 ng/mL. Intra‐ and inter‐day precision was within 8.6% and accuracy was ≤10.2%. Stability results proved that gypenoside XLIX and the IS remained stable throughout the analytical procedure. The validated LC–MS/MS method was then applied to analyze the pharmacokinetics of gypenoside XLIX after intravenous administration to rats (1.0, 2.0 and 4.0 mg/kg).  相似文献   

19.
A bioanalytical method for the quantification of tacrolimus (TAC) on dried blood spots (DBS) using liquid chromatography, electrospray ionization coupled with tandem mass spectrometry (LC‐ESI‐MS/MS) was developed and validated. It involves solvent extraction of a punch disk of DBS followed by liquid–liquid extraction. The analyte and the internal standard (IS, ascomycin) were separated on a phenyl column using an isocratic mobile phase elution at a flow rate of 0.3 mL/min. The assay was linear from 1 to 80 ng/mL. The mean recovery of TAC was 76.6%. Intra‐assay, inter‐assay imprecision and biases were all less than 15%. TAC on DBS was stable for at least 10 days at room temperature, and at least 24 h at 50°C. A chromatographic effect of the filter paper (Whatman 903) was not detected. The volume of blood (15–50 μL) and hematocrit of blood (ranging from 23.2 to 48.6%) did not show a significant influence on detection of TAC concentration by DBS‐LC‐MS/MS. Fifty samples from patients were detected by both DBS‐LC‐MS/MS and microparticle enzyme‐linked immunoassay (MEIA). TAC concentrations measured by DBS‐LC‐MS/MS method tended to be lower than those by MEIA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This report describes the development and validation of an LC‐MS/MS method for the quantitative determination of glyburide (GLB), its five metabolites (M1, M2a, M2b, M3 and M4) and metformin (MET) in plasma and urine of pregnant patients under treatment with a combination of the two medications. The extraction recovery of the analytes from plasma samples was 87–99%, and that from urine samples was 85–95%. The differences in retention times among the analytes and the wide range of the concentrations of the medications and their metabolites in plasma and urine patient samples required the development of three LC methods. The lower limit of quantitation (LLOQ) of the analytes in plasma samples was as follows: GLB, 1.02 ng/mL; its five metabolites, 0.100–0.113 ng/mL; and MET, 4.95 ng/mL. The LLOQ in urine samples was 0.0594 ng/mL for GLB, 0.984–1.02 ng/mL for its five metabolites and 30.0 µg/mL for MET. The relative deviation of this method was <14% for intra‐day and inter‐day assays in plasma and urine samples, and the accuracy was 86–114% in plasma, and 94–105% in urine. The method described in this report was successfully utilized for determining the concentrations of the two medications in patient plasma and urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号