首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Dried blood spot (DBS) sampling has gained considerable interest as a microsampling technique to support drug discovery and development owing to its enormous ethical and practical benefits. Quantitative determinations of drugs and/or their metabolites collected in DBS matrix in its current format, however, have encountered technical challenges and regulatory uncertainty. The challenges of DBS bioanalysis are largely ascribed to the way how samples are collected and analyzed. Currently, an uncontrolled amount of a blood sample, e.g. 20 µl, is collected per time point per sample and spotted onto cellulose paper. Quantitation is based on removal of a fixed area of the DBS sample, resulting in sample waste, a need for mechanical punching and concomitant potential punching carryover, uncertainty in recovery assessment and the adverse impact of hematocrit on accurate quantitation. Here, we describe the concept and applications of a novel concept, namely perforated dried blood spot (PDBS), for accurate microsampling that addresses previous challenges. Advantages of PDBS are enumerated and compared with conventional DBS in the context of microsampling and liquid chromatography tandem mass spectrometry bioanalysis. Two approaches for accurate microsampling of a small volume of blood (5 µl) are proposed and demonstrated, i.e. Microsafe® pipettes and the Drummond incremental pipette. Two online sample enrichment techniques to enhance liquid chromatography tandem mass spectrometry sensitivity for microsampling bioanalysis are discussed. The PDBS concept was successfully applied for accurate sample collection (5 µl) in a toxicokinetic study in rats given a single oral gavage dose of acetaminophen. Perspectives on bioanalytical method validation for regulated DBS/PDBS microsampling are also presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
An LC–MS/MS method was developed and validated for bioanalysis of clofazimine in human dried blood spot (DBS) samples in support of a clinical study on multidrug‐resistant tuberculosis in developing countries. The validated assay dynamic range was from 10.0 to 2000 ng/mL using a 1/8 inch DBS punch. The accuracy and precision of the assay were ±11.0% (bias) and ≤13.5% (CV) for the LLOQs (10.0 ng/mL) and ±15% (bias) and ≤15% (CV) for all other QC levels. The assay was proved to be free from the possible impact owing to spot size and storage temperature (e.g. at 60°C, ≤ − 60°C). The validated assay is well suited for the intended clinical study where conventional pharmacokinetic sample collection is not feasible.  相似文献   

3.
Larotrectinib is a first-generation tropomyosin kinase inhibitor, approved for the treatment of solid tumors. In this paper, we present a validated dried blood spot (DBS) method for the quantitation of larotrectinib from mouse blood using HPLC–MS/MS, which was operated under multiple reaction monitoring mode. To the DBS disc cards, acidified methanol enriched with internal standard (IS; enasidenib) was added and extracted using tert-butyl methyl ether as an extraction solvent with sonication. Chromatographic separation of larotrectinib and the IS was achieved on an Atlantis dC18 column using 10 mm ammonium formate–acetonitrile (30:70, v/v) delivered at a flow-rate of 0.80 ml/min. Under these optimized conditions, the retention times of larotrectinib and the IS were ~0.93 and 1.37 min, respectively. The total run time was 2.50 min. Larotrectinib and the IS were analyzed using positive ion scan mode and parent–daughter mass to charge ion (m/z) transitions of 429.1 → 342.1 and 474.1 → 267.1, respectively, were used for the quantitation. The calibration range was 1.06–5,080 ng/ml. No matrix effect or carryover was observed. Hematocrit did not influence DBS larotrectinib concentrations. All of the validation parameters met the acceptance criteria. The applicability of the validated method was shown in a mouse pharmacokinetic study.  相似文献   

4.
Quantitation of drugs used for the treatment of chronic lymphocytic leukemia in various biological matrices during both pre-clinical and clinical developments is very important, often in routine therapeutic drug monitoring. The first developed methods for quantitation were traditionally done on LC in combination with either UV or fluorescence detection. However, the emergence of LC with mass spectrometry in tandem in early 1990s has revolutionized the quantitation as it has provided better sensitivity and selectivity within a shorter run time; therefore it has become the choice of method for the analysis of various drugs. In this article, an overview of various bioanalytical methods (HPLC or LC–MS/MS) for the quantification of drugs for the treatment of chronic lymphocytic leukemia, along with applicability of these methods, is given.  相似文献   

5.
The neuraminidase inhibitor oseltamivir (Tamiflu®) is currently the first-line therapy for patients with influenza virus infection. Common analysis of the prodrug and its active metabolite oseltamivircarboxylate is determined via extraction from plasma. Compared with these assays, dried blood spot (DBS) analysis provides several advantages, including a minimum sample volume required for the measurement of drugs in whole blood. Samples can easily be obtained via a simple, non-invasive finger or heel prick. Mainly, these characteristics make DBS an ideal tool for pediatrics and to measure multiple time points such as those needed in therapeutic drug monitoring or pharmacokinetic studies. Additionally, DBS sample preparation, stability, and storage are usually most convenient. In the present work, we developed and fully validated a DBS assay for the simultaneous determination of oseltamivir and oseltamivircarboxylate concentrations in human whole blood. We demonstrate the simplicity of DBS sample preparation, and a fast, accurate and reproducible analysis using ultra high-performance liquid chromatography coupled to a triple quadrupole mass spectrometer. A thorough validation on the basis of the most recent FDA guidelines for bioanalytical method validation showed that the method is selective, precise, and accurate (≤15% RSD), and sensitive over the relevant clinical range of 5–1,500 ng/mL for oseltamivir and 20–1,500 ng/mL for the oseltamivircarboxylate metabolite. As a proof of concept, oseltamivir and oseltamivircarboxylate levels were determined in DBS obtained from healthy volunteers who received a single oral dose of Tamiflu®.  相似文献   

6.
Different options on performing incurred sample reanalysis (ISR) on dried blood spot (DBS) cards were investigated using drugs belonging to various therapeutic areas: (a) darolutamide (to treat prostate cancer) and (b) filgotinib (to treat rheumatoid arthritis). The proposed novel methodology included the generation of half-DBS and quarter-DBS discs after initial blood collection using the full-DBS discs. Accordingly, blood collection via DBS was performed in male BALB/c mice following intravenous and oral dosing of darolutamide; in male Sprague Dawley rats following intravenous and oral dosing of filgotinib. The ISR data generated from the full-DBS disc, half-DBS disc and quarter-DBS disc were compared for the assessment of the proposed methodology. Quantification of darolutamide and filgotinib was accomplished using liquid chromatography-electrospray ionization/tandem mass spectrometry methods. Darolutamide and filgotinib ISR samples, which were collected and prepared using full-, half- and quarter-DBS discs, met the acceptance criteria for ISR analysis. In conclusion, this is the first report showing a viable tool for the performance of ISR on DBS cards. The use of quarter- or half-DBS discs would aid in not only ISR but also in long-term storage experiments of analytes because it would avoid the need for additional blood sampling in patients.  相似文献   

7.
The quantitative analysis of SJA6017, a peptide aldehyde inhibitor of calpain (Calpain Inhibitor VI), has encountered challenges in preclinical drug studies. The complex reverse-phase HPLC chromatographic behavior exhibits two peaks, each containing multiple species. An liquid chromatography–mass spectrometry (LC–MS/MS) study proposed an explanation for this phenomenon, caused by the amide aldehyde structure of SJA6017. Four chemical species corresponding to the two HPLC peaks have been identified as SJA6017 and its methyl hemiacetal, methyl enol ether, and gem-diol. In many instances of preclinical studies, methanol is favored as a substitute for DMSO. The hemiacetal is formed when the amide-activated peptide aldehyde reacts with methanol, which can then be further dehydrated in the mass spectrometer ion source under high temperature to form the methyl enol ether. The hemiacetal and gem-diol can also be decomposed to SJA6017 in the ion source. Additionally, the amide-activated peptide aldehyde can easily hydrate to the gem-diol of SJA6017 during sample incubation or sample preparation. The hemiacetal and gem-diol of SJA6017 are stable enough to have different retention times in the liquid chromatography, which explains why SJA6017 appears as two peaks, each containing multiple species. An LC–MS/MS tandem quadrupole mass spectrometer quantitative analysis method is proposed, enabling the analysis of these types of samples. This work serves as both an illustrative example and a cautionary note for mass analysis, sample incubations, and sample preparations involving compounds of peptide aldehyde, including similar aldehyde-containing metabolites, especially when methanol is present. This study provides the information needed to understand peptide aldehyde behavior at various steps of preclinical in vitro studies in the presence of methanol. It has assisted in the development of the SJA6017 bioanalysis method and will also aid in the development of bioanalysis methods for similar peptide aldehydes.  相似文献   

8.
Therapeutic drug monitoring (TDM) has shown to benefit patients treated with drugs of many drug classes, among which is oncology. With an increasing demand for drug monitoring, new assays have to be developed and validated. Guidelines for bioanalytical validation issued by the European Medicines Agency and US Food and Drug Administration are applicable for clinical trials and toxicokinetic studies and demand fully validated bioanalytical methods to yield reliable results. However, for TDM assays a limited validation approach is suggested based on the intended use of these methods. This review presents an overview of publications that describe method validation of assays specifically designed for TDM. In addition to evaluating current practice, we provide recommendations that could serve as a guide for future validations of TDM assays.  相似文献   

9.
An early clinical development study (phase I) was conducted to determine the usefulness of dried blood spot (DBS) sampling as an alternative to venous sampling for phenotyping and genotyping of CYP450 enzymes in healthy volunteers. Midazolam (MDZ) was used as a substrate for phenotyping CYP3A4 activity; the concentrations of MDZ and its main metabolite 1'-hydroxymidazolam (1-OH MDZ) were compared between the DBS method from finger punctures, plasma and whole blood (WB), drawn by venipuncture, whereby several methodological parameters were studied (i.e. punch width, amount of dots analyzed and storage time stability). Genotyping between DBS and venous WB samples was compared for CYP2D6 (*3, *4, *6), CYP2C19 (*2, *3), CYP3A4 (*1B) and CYP3A5 (*3C). In addition, the subject's and phlebotomist's satisfaction with venous blood sampling compared with the DBS method was evaluated using a standardized questionnaire. An LC-MS/MS method for the quantification of the MDZ and 1-OH MDZ concentrations in DBS samples was developed and validated in the range of 0.100-100 ng/mL. No compromises were made for the limits of quantification of the DBS-LC-MS/MS method vs the authentic plasma and WB methods.  相似文献   

10.
Heparan sulfate is a linear polysaccharide and serves as an important biomarker to monitor patient response to therapies for MPS III disorder. It is challenging to analyze heparan sulfate intact owing to its complexity and heterogeneity. Therefore, a sensitive, robust and validated LC–MS/MS method is needed to support the clinical studies for the quantitation of heparan sulfate in biofluids under regulated settings. Presented in this work are the results of the development and validation of an LC–MS/MS method for the quantitation of heparan sulfate in human urine using selected high‐abundant disaccharides as surrogates. During sample processing, a combination of analytical technologies have been employed, including rapid digestion, filtration, solid‐phase extraction and chemical derivatization. The validated method is highly sensitive and is able to analyze heparan sulfate in urine samples from healthy donors. Disaccharide constitution analysis in urine samples from 25 healthy donors was performed using the assay and demonstrated the proof of concept of using selected disaccharides as a surrogate for validation and quantitation.  相似文献   

11.
Thiorphan, the active metabolite of racecadotril, can undergo oxidation in biological matrices such as blood and plasma. In bioanalysis, a general approach for the stabilization of such a molecule is to derivatize the thiol group to a more stable thioether, often requiring complex handling procedures at the clinical site. In this research, the concept of dried blood spot (DBS) on‐card derivatization was evaluated to stabilize thiorphan. DBS cards were in‐house pre‐treated with 2‐bromo‐3′‐methoxyacetophenone and left to dry prior to blood spotting. Thiorphan was shown to be effectively derivatized to thiorphan–methoxyacetophenone once applied on the in‐house pre‐treated cards. Thiorphan–methoxyacetophenone was extracted by soaking a 6 mm DBS punch in methanol containing the internal standard (thiorphan–methoxyacetophenone‐D5). Chromatographic separation was achieved on a Waters XBridge C18 column with a gradient elution of 5 m m NH4HCO3 and methanol in 2.5 min and detection by ESI(+)/MS/MS. A linear (weighted 1/x2) relationship was obtained over a concentration range of 5.00–600.00 ng/mL. The assay met regulatory guidelines acceptance criteria for sensitivity, selectivity, precision and accuracy, matrix effect, recovery, dilution integrity and multiple stability evaluations. The DBS on‐card derivatization has shown to be an easy and reliable alternative form of sample collection for the quantification of thiorphan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Streamlined quantitative metabolomics in central metabolism of bacteria would be greatly facilitated by a high-efficiency liquid chromatography (LC) method in conjunction with accurate quantitation. To achieve this goal, a methodology for LC-tandem quadrupole mass spectrometry (LC-MS/MS) involving a pentafluorophenylpropyl (PFPP) column and culture-derived global (13)C-labeled internal standards (I.Ss.) has been developed and compared to hydrophilic interaction liquid chromatography (HILIC)-MS/MS and published combined two-dimensional gas chromatography and LC methods. All 50 tested metabolite standards from 5 classes (amino acids, carboxylic acids, nucleotides, acyl-CoAs and sugar phosphates) displayed good chromatographic separation and sensitivity on the PFPP column. In addition, many important critical pairs such as isomers/isobars (e.g. isoleucine/leucine, methylsuccinic acid/ethylmalonic acid and malonyl-CoA/3-hydroxybutyryl-CoA) and metabolites of similar structure (e.g. malate/fumarate) were resolved better on the PFPP than on the HILIC column. Compared to only one (13)C-labeled I.S., the addition of global (13)C-labeled I.Ss. improved quantitative linearity and accuracy. PFPP-MS/MS with global (13)C-labeled I.Ss. allowed the absolute quantitation of 42 metabolite pool sizes in Methylobacterium extorquens AM1. A comparison of metabolite level changes published previously for ethylamine (C2) versus succinate (C4) cultures of M. extorquens AM1 indicated a good consistency with the data obtained by PFPP-MS/MS, suggesting this single approach has the capability of providing comprehensive metabolite profiling similar to the combination of methods. The more accurate quantification obtained by this method forms a fundamental basis for flux measurements and can be used for metabolism modeling in bacteria in future studies.  相似文献   

13.
Paper spray ionization (PSI) is a direct, fast, and low‐cost ambient ionization technique which may have clinical utility for qualitative and quantitative analysis of therapeutic drugs and metabolites from patient specimens. We developed and validated a PSI‐mass spectrometry (PSI‐MS/MS) method according to the US‐FDA guidelines for bioanalytical studies to measure the prostate cancer drug abiraterone directly from patient plasma. The established linearity range was 3.1–156.8 ng/mL with a precision (%CV) and an accuracy (%) range of 0.5–10.7 and 93.5–103.2, respectively. The mean internal standard normalized matrix factor for abiraterone was just below 1 with highest %CV of 10.2 at the low‐level quality control. In benchmarking the performance of this assay against a published LC‐MS/MS assay, we showed they were mostly equivalent, with the exception of accuracy with clinical samples. We found the quantitative values observed for abiraterone measured directly from patient plasma using PSI‐MS/MS showed positive bias. Upon investigation, we concluded the increased values were due to summed quantitation of isomeric abiraterone conjugates and metabolites which are separable by LC‐MS/MS, but not with the current PSI‐MS/MS configuration. Despite demonstrating the utility of PSI‐MS/MS for rapid bioanalysis, this study also highlighted a limitation encountered with the direct analysis of abiraterone in clinical samples.  相似文献   

14.
Bioanalysis assays that reliably quantify biotherapeutics and biomarkers in biological samples play pivotal roles in drug discovery and development. Liquid chromatography coupled with mass spectrometry (LC–MS), owing to its superior specificity, faster method development and multiplex capability, has evolved as one of the most important platforms for bioanalysis of biotherapeutics, particularly new scaffolds such as half-life extension platforms for proteins and peptides, as well as antibody drug conjugates. Intact LC–MS analysis is orthogonal to bottom-up surrogate peptide approach by providing whole molecule quantitation and high-level sequence and structure information. Here we review the latest development in LC–MS bioanalysis of intact proteins and peptides by summarizing recent publications and discussing the important topics such as the comparison between top-down intact analysis and bottom-up surrogate peptide approach, as well as simultaneous quantitation and catabolite identification. Key bioanalytical issues around intact protein bioanalysis such as sensitivity, data processing strategies, specificity, sample preparation and LC condition are elaborated. For peptides, topics including quantitation of intact peptide vs. digested surrogate peptide, metabolites, sensitivity, LC condition, assay performance, internal standard and sample preparation are discussed.  相似文献   

15.
药物分析中薄层色谱的方法认证   总被引:2,自引:0,他引:2  
林乐明  张军 《色谱》1997,15(4):310-313
在药物分析中,针对所要求的性能参数,对一个薄层色谱程序的各个环节必须进行的认证方法和认可标准进行了讨论。建议当提出结果报告时,应附上关于对方法的认证参数和认证方法的说明。  相似文献   

16.
Dried blood spot (DBS) sampling and quantitative analyses of many current therapeutic drug monitoring (TDM)-guided drugs are advantageous because of the minimal invasive sampling strategy. Here, a fast and robust LC-MS/MS method was developed and analytically validated for simultaneous determination of venlafaxine (VEN) and O-desmethylvenlafaxine (ODV) in DBS. Six-millimeter circles were punched out from DBS collected on Whatman DMPK-C paper, and the DBS was extracted with acetonitrile/methanol at 1:3. The total run time was 4.8 min. The assay was linear in the range of 20–1,000 μg/L for both VEN and ODV. Assay accuracy and precision was well within limits of acceptance (LLOQ?=?20 μg/L). Normal hematocrit concentrations (0.30–0.50) did not influence the results neither did a normal spot volume (40–80 μL). Punch position at the perimeter instead of the center of the blood spot gave a bias ranging from 2.4 to 10.4 %. Correlation between plasma and spiked DBS samples was high. The concentrations found in spiked DBS samples were higher than those in plasma, indicating that a conversion factor for translation of DBS to plasma values is needed. This analytically validated method is suitable for determination of VEN and ODV in DBS and applicable for TDM. The method will be used for TDM of VEN in the Dutch CYSCE multicenter trial (NCT01778907).  相似文献   

17.
Dried blood spot (DBS) samples are already successfully used in newborn screening and pharmacological analyses. The application of DBS matrix to further metabolomic methods will considerably extend the analytical options for the diagnostics of metabolic diseases. We present an MS/MS based method for the simultaneous extraction and quantification of 188 metabolites from dried blood spots. We provide a sensitive and reproducible method that adapts the AbsoluteIDQ? p180 kit of Biocrates to the DBS matrix for the quantification of metabolites of different substance classes including amino acids, biogenic amines, free carnitine, acylcarnitines, hexoses, glycerophospholipids, lysophosphatidylcholines, phosphatidylcholines, and sphingolipids.  相似文献   

18.
To support therapeutic drug monitoring of patients with cancer, a fast and accurate method for simultaneous quantification of the registered anticancer drugs afatinib, axitinib, ceritinib, crizotinib, dabrafenib, enzalutamide, regorafenib and trametinib in human plasma using liquid chromatography tandem mass spectrometry was developed and validated. Human plasma samples were collected from treated patients and stored at −20°C. Analytes and internal standards (stable isotopically labeled analytes) were extracted with acetonitrile. An equal amount of 10 mm NH4CO3 was added to the supernatant to yield the final extract. A 2 μL aliquot of this extract was injected onto a C18‐column, gradient elution was applied and triple‐quadrupole mass spectrometry in positive‐ion mode was used for detection. All results were within the acceptance criteria of the latest US Food and Drug Administration guidance and European Medicines Agency guidelines on method validation, except for the carry‐over of ceritinib and crizotinib. These were corrected for by the injection order of samples. Additional stability tests were carried out for axitinib and dabrafenib in relation to their reported photostability. In conclusion, the described method to simultaneously quantify the eight selected anticancer drugs in human plasma was successfully validated and applied for therapeutic drug monitoring in cancer patients treated with these drugs.  相似文献   

19.
Summary A simple and practical micellar electrokinetic capillary chromatography (MEKC) method is proposed for the quantitation of immunosuppressive drugs such as azathioprine (AZA), mycophenolate mofetil (MMF), cyclosporine A (CyA) and tacrolimus (FK 506). The electrophoretic separation of the analytes was performed with a background electrolyte containing 20 mM phosphate buffer at pH 7.5, 50 mM SDS and methanol as an organic modifier. Fused silica capillaries 75 μm i.d. and 60 cm in length were employed and detection of analytes was performed at 214 nm. Thorough validation according to international guidelines showed that the proposed method is reliable and appropiate for the routine analysis of immunosuppressants. Moreover, it may be an advantageous alternative to the traditional chromatographic methodologies currently employed in the pharmaceutical and bioanalysis fields.  相似文献   

20.
We have evaluated (i) a multiplexed electrospray interface, (ii) serial sample introduction, and (iii) a quadrupole time-of-flight mass spectrometer for quantitative bioanalysis in compliance with good laboratory practice. These evaluations were done using a 96-well plate liquid chromatography-tandem mass spectrometry method for the quantitation of loratadine and its metabolite, descarboethoxyloratadine. The assay has a dynamic range of 1-1000 ng/ml with 5.56 pg of each analyte being injected on-column at the limit of quantitation. For the four-channel multiplexed electrospray experiments, one-run validations were performed simultaneously in rat, rabbit, mouse and dog plasma. In the four-stream serial experiments, the total run time of the assay was reduced from 3.5 to 0.35 min, resulting in a net acquisition time of 11 s. Four simulated validation runs with standard and quality control solutions were analyzed. Precision and accuracy for standards and quality control samples met US Food and Drug Administration recommended criteria for both the drug and the metabolite using those two approaches. In addition, a quadrupole time-of-flight mass spectrometer was used as a detector in the tandem mass spectrometry mode for the loratadine assay. Our results demonstrated that a dynamic range of three orders of magnitude could be achieved using the quadrupole time-of-flight mass spectrometer, making it useful for quantitation in preclinical toxicology studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号