共查询到20条相似文献,搜索用时 15 毫秒
1.
Ya‐nan Zhang Zhi‐zhong Sun Ting‐chun Wang 《Numerical Methods for Partial Differential Equations》2013,29(5):1487-1503
A linearized Crank–Nicolson‐type scheme is proposed for the two‐dimensional complex Ginzburg–Landau equation. The scheme is proved to be unconditionally convergent in the L2 ‐norm by the discrete energy method. The convergence order is \begin{align*}\mathcal{O}(\tau^2+h_1^2+h^2_2)\end{align*}, where τ is the temporal grid size and h1,h2 are spatial grid sizes in the x ‐ and y ‐directions, respectively. A numerical example is presented to support the theoretical result. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 相似文献
2.
In this paper, a high‐order accurate numerical method for two‐dimensional semilinear parabolic equations is presented. We apply a Galerkin–Legendre spectral method for discretizing spatial derivatives and a spectral collocation method for the time integration of the resulting nonlinear system of ordinary differential equations. Our formulation can be made arbitrarily high‐order accurate in both space and time. Optimal a priori error bound is derived in the L2‐norm for the semidiscrete formulation. Extensive numerical results are presented to demonstrate the convergence property of the method, show our formulation have spectrally accurate in both space and time. John Wiley & Sons, Ltd. 相似文献
3.
The Crank–Nicolson–Galerkin finite element method for a nonlocal parabolic equation with moving boundaries 下载免费PDF全文
Rui M. P. Almeida José C. M. Duque Jorge Ferreira Rui J. Robalo 《Numerical Methods for Partial Differential Equations》2015,31(5):1515-1533
The aim of this article is to establish the convergence and error bounds for the fully discrete solutions of a class of nonlinear equations of reaction–diffusion nonlocal type with moving boundaries, using a linearized Crank–Nicolson–Galerkin finite element method with polynomial approximations of any degree. A coordinate transformation which fixes the boundaries is used. Some numerical tests to compare our Matlab code with some existing moving finite element methods are investigated. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1515–1533, 2015 相似文献
4.
An energy‐preserving Crank–Nicolson Galerkin method for Hamiltonian partial differential equations 下载免费PDF全文
Haochen Li Yushun Wang Qin Sheng 《Numerical Methods for Partial Differential Equations》2016,32(5):1485-1504
A semidiscretization based method for solving Hamiltonian partial differential equations is proposed in this article. Our key idea consists of two approaches. First, the underlying equation is discretized in space via a selected finite element method and the Hamiltonian PDE can thus be casted to Hamiltonian ODEs based on the weak formulation of the system. Second, the resulting ordinary differential system is solved by an energy‐preserving integrator. The relay leads to a fully discretized and energy‐preserved scheme. This strategy is fully realized for solving a nonlinear Schrödinger equation through a combination of the Galerkin discretization in space and a Crank–Nicolson scheme in time. The order of convergence of our new method is if the discrete L2‐norm is employed. An error estimate is acquired and analyzed without grid ratio restrictions. Numerical examples are given to further illustrate the conservation and convergence of the energy‐preserving scheme constructed.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1485–1504, 2016 相似文献
5.
Florentina Tone 《Numerical Methods for Partial Differential Equations》2007,23(5):1235-1248
In this article we study the stability for all positive time of the Crank–Nicolson scheme for the two‐dimensional Navier–Stokes equations. More precisely, we consider the Crank–Nicolson time discretization together with a general spatial discretization, and with the aid of the discrete Gronwall lemma and of the discrete uniform Gronwall lemma we prove that the numerical scheme is stable, provided a CFL‐type condition is satisfied. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007 相似文献
6.
Numerical analysis of the Crank–Nicolson extrapolation time discrete scheme for magnetohydrodynamics flows 下载免费PDF全文
Yuhong Zhang Yanren Hou Li Shan 《Numerical Methods for Partial Differential Equations》2015,31(6):2169-2208
In this article, we consider the time‐discrete method for three‐dimensional incompressible magnetohydrodynamics (MHD) equations. The Crank–Nicolson extrapolation scheme is used for time discretization. From the previous articles, under the assumption that the solution has high regularity which cannot be realistically assumed, the convergence of this scheme is optimal two‐order. In this article, under modest assumptions of initial values and the body force, we prove some new regularity results of the MHD equations. In addition, we derive the unconditional convergence of our scheme, but the convergent order is not optimal. Furthermore, we provide another conditional convergence estimation to increase the order. It is shown that the convergent rate increase half order in ‐norm, and at least a quarter order increased in ‐norm than the uncondtional results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 2169–2208, 2015 相似文献
7.
Wenjie Liu Boying Wu Jiebao Sun 《Numerical Methods for Partial Differential Equations》2015,31(3):670-690
In this article, we introduce a new space‐time spectral collocation method for solving the one‐dimensional sine‐Gordon equation. We apply a spectral collocation method for discretizing spatial derivatives, and then use the spectral collocation method for the time integration of the resulting nonlinear second‐order system of ordinary differential equations (ODE). Our formulation has high‐order accurate in both space and time. Optimal a priori error bounds are derived in the L2‐norm for the semidiscrete formulation. Numerical experiments show that our formulation have exponential rates of convergence in both space and time. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 670–690, 2015 相似文献
8.
WenYi Tian Weihua Deng Yujiang Wu 《Numerical Methods for Partial Differential Equations》2014,30(2):514-535
This article discusses the spectral collocation method for numerically solving nonlocal problems: one‐dimensional space fractional advection–diffusion equation; and two‐dimensional linear/nonlinear space fractional advection–diffusion equation. The differentiation matrixes of the left and right Riemann–Liouville and Caputo fractional derivatives are derived for any collocation points within any given bounded interval. Several numerical examples with different boundary conditions are computed to verify the efficiency of the numerical schemes and confirm the exponential convergence; the physical simulations for Lévy–Feller advection–diffusion equation and space fractional Fokker–Planck equation with initial δ‐peak and reflecting boundary conditions are performed; and the eigenvalue distributions of the iterative matrix for a variety of systems are displayed to illustrate the stabilities of the numerical schemes in more general cases. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 514–535, 2014 相似文献
9.
Dileep Kumar Sudhakar Chaudhary V.V.K. Srinivas Kumar 《Numerical Methods for Partial Differential Equations》2019,35(6):2056-2075
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation. 相似文献
10.
Raziyeh Erfanifar Khosro Sayevand Nasim Ghanbari Hamid Esmaeili 《Numerical Methods for Partial Differential Equations》2021,37(1):614-625
This study presents a robust modification of Chebyshev ? ‐weighted Crank–Nicolson method for analyzing the sub‐diffusion equations in the Caputo fractional sense. In order to solve the problem, by discretization of the sub‐fractional diffusion equations using Taylor's expansion a linear system of algebraic equations that can be analyzed by numerical methods is presented. Furthermore, consistency, convergence, and stability analysis of the suggested method are discussed. In this framework, compact structures of sub‐diffusion equations are considered as prototype examples. The main advantage of the proposed method is that, it is more efficient in terms of CPU time, computational cost and accuracy in comparing with the existing ones in open literature. 相似文献
11.
12.
In order to reduce the order of the coefficient vectors of the solutions for the classical Crank–Nicolson collocation spectral (CNCS) method of two-dimensional (2D) viscoelastic wave equations via proper orthogonal decomposition, we first establish a reduced-order extrapolated CNCS (ROECNCS) method of the 2D viscoelastic wave equations so that the ROECNCS method has the same basis functions as the classical CNCS method and maintains all advantages of the classical CNCS method. Then, by means of matrix analysis, we discuss the existence, stability, and convergence for the ROECNCS solutions so that the theory analysis becomes very concise. Finally, we utilize some numerical experiments to validate that the consequences of numerical computations are accordant with the theoretical analysis such that the effectiveness and viability of the ROECNCS method are further verified. Therefore, both theory and method of this paper are new and totally different from the existing reduced-order methods. 相似文献
13.
Marco Picasso Virabouth Prachittham 《Journal of Computational and Applied Mathematics》2009,233(4):1139-1154
An a posteriori upper bound is derived for the nonstationary convection–diffusion problem using the Crank–Nicolson scheme and continuous, piecewise linear stabilized finite elements with large aspect ratio. Following Lozinski et al. (2009) [13], a quadratic time reconstruction is used.A space and time adaptive algorithm is developed to ensure the control of the relative error in the L2(H1) norm. Numerical experiments illustrating the efficiency of this approach are reported; it is shown that the error indicator is of optimal order with respect to both the mesh size and the time step, even in the convection dominated regime and in the presence of boundary layers. 相似文献
14.
Talha Achouri 《Numerical Methods for Partial Differential Equations》2019,35(1):200-221
In this article, two finite difference schemes for solving the semilinear wave equation are proposed. The unique solvability and the stability are discussed. The second‐order accuracy convergence in both time and space in the discrete H1‐norm for the two proposed difference schemes is proved. Numerical experiments are performed to support our theoretical results. 相似文献
15.
Mixed two‐grid finite difference methods for solving one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations 下载免费PDF全文
The aim of this paper is to propose mixed two‐grid finite difference methods to obtain the numerical solution of the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. The finite difference equations at all interior grid points form a large‐sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a family of finite difference methods for discretizing the spatial and time derivatives. The obtained system has been solved by two‐grid method, where the two‐grid method is used for solving the large‐sparse linear systems. Also, in the proposed method, the spectral radius with local Fourier analysis is calculated for different values of h and Δt. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
16.
A backward euler orthogonal spline collocation method for the time‐fractional Fokker–Planck equation 下载免费PDF全文
Graeme Fairweather Haixiang Zhang Xuehua Yang Da Xu 《Numerical Methods for Partial Differential Equations》2015,31(5):1534-1550
We formulate and analyze a novel numerical method for solving a time‐fractional Fokker–Planck equation which models an anomalous subdiffusion process. In this method, orthogonal spline collocation is used for the spatial discretization and the time‐stepping is done using a backward Euler method based on the L1 approximation to the Caputo derivative. The stability and convergence of the method are considered, and the theoretical results are supported by numerical examples, which also exhibit superconvergence. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1534–1550, 2015 相似文献
17.
Chaoxia Yang 《Numerical Methods for Partial Differential Equations》2014,30(4):1279-1290
We propose a decoupled and linearized fully discrete finite element method (FEM) for the time‐dependent Ginzburg–Landau equations under the temporal gauge, where a Crank–Nicolson scheme is used for the time discretization. By carefully designing the time‐discretization scheme, we manage to prove the convergence rate , where τ is the time‐step size and r is the degree of the finite element space. Due to the degeneracy of the problem, the convergence rate in the spatial direction is one order lower than the optimal convergence rate of FEMs for parabolic equations. Numerical tests are provided to support our error analysis. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1279–1290, 2014 相似文献
18.
A Priori Error Estimates of Crank–Nicolson Finite Volume Element Method for a Hyperbolic Optimal Control Problem 下载免费PDF全文
Xianbing Luo 《Numerical Methods for Partial Differential Equations》2016,32(5):1331-1356
In this article, a Crank–Nicolson linear finite volume element scheme is developed to solve a hyperbolic optimal control problem. We use the variational discretization technique for the approximation of the control variable. The optimal convergent order O(h2 + k2) is proved for the numerical solution of the control, state and adjoint‐state in a discrete L2‐norm. To derive this result, we also get the error estimate (convergent order O(h2 + k2)) of Crank–Nicolson finite volume element approximation for the second‐order hyperbolic initial boundary value problem. Numerical experiments are presented to verify the theoretical results.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1331–1356, 2016 相似文献
19.
Some new nonlinear wave solutions and their convergence for the (2+1)‐dimensional Broer–Kau–Kupershmidt equation 下载免费PDF全文
We use the bifurcation method of dynamical systems to study the (2+1)‐dimensional Broer–Kau–Kupershmidt equation. We obtain some new nonlinear wave solutions, which contain solitary wave solutions, blow‐up wave solutions, periodic smooth wave solutions, periodic blow‐up wave solutions, and kink wave solutions. When the initial value vary, we also show the convergence of certain solutions, such as the solitary wave solutions converge to the kink wave solutions and the periodic blow‐up wave solutions converge to the solitary wave solutions. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
20.
Jianping Zhao Yanren Hou Haibiao Zheng Yongfei Li Haifeng Wang 《Mathematical Methods in the Applied Sciences》2016,39(12):3506-3515
A dimension splitting method (DSM) with Crank–Nicolson time discrete strategy for a three‐dimensional heat equation is proposed. The basic idea is to simulate the three‐Dimensional problem by numerically solving a series of two‐dimensional problems in parallel fashion. Convergence and error estimation for the DSM scheme are derived in the paper. Numerical experiments demonstrate the feasibility and efficiency of the DSM scheme. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献