首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymeric Si/C/O/N xerogels, with the idealized polymer network structure comprising [Si O Si(NCN)3]n moieties, were prepared by reactions of hexachlorodisiloxane (Cl3Si O SiCl3) with bis(trimethylsilyl)carbodiimide (Me3Si NCN SiMe3, BTSC). NMR and FTIR spectra indicate the existence of ‐NCN‐ and Si O Si‐ units in the xerogels and also in the ceramic materials obtained upon pyrolysis. The feasibility of this reaction protocol was confirmed on the molecular level by the deliberate synthesis of the macrocyclic compound [SiPh2 O SiPh2(NCN)]2, the crystal structure and spectroscopic data of which are reported. The influence of pyridine as a catalyst for the cross‐linking reaction was studied. The degree of cross‐linking increased within the polymers with the addition of pyridine. It was shown by the reaction of hexachlorodisiloxane with excess pyridine that the latter appears to activate only one out of the two ‐SiCl3 moieties under formation of hexacoordinated silicon compounds. The crystal structure of Cl3Si O SiCl3(pyridine)2 is presented. Quantum chemical calculations are in support of this adduct being a potential intermediate in the pyridine catalyzed sol–gel process. The ceramic yield after pyrolysis of the Si/C/O/N‐xerogels at 1000 °C, which reaches values up to 50%, was found to depend on the aging protocol (time, temperature), whereas no correlation was found with the amount of pyridine added for xerogel synthesis. The Si/C/N/O‐ceramics obtained after pyrolysis at 1000 °C under NH3 are completely amorphous. Chemically they have to be considered as hybrids between an ideal [SiOSi(NCN)3]n network and glass‐like Si2N2O. The products are mesoporous with closed pores and a broad pore size distribution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The synthesis, reactivity, and electronic structure of the unique germylone iron carbonyl complex [SiNSi]Ge0 →Fe(CO)4 is reported. The compound was obtained in 49 % yield from the reaction of the bis(N‐heterocyclic silylenyl)pyridine pincer ligand SiNSi (1,6‐C5NH3‐[EtNSi(NtBu)2CPh]2) with GeCl2?(dioxane) to give the corresponding chlorogermyliumylidene chloride precursor [SiNSi]GeIICl+ Cl? , which was further reduced with K2Fe(CO)4. Single‐crystal X‐ray diffraction analysis of [SiNSi]Ge →Fe(CO)4 revealed that the Ge0 center adopts a trigonal‐pyramidal geometry with a Si‐Ge‐Si angle of 95.66(2)°. Remarkably, one of the SiII donor atoms in the complex is five‐coordinated because of additional (pyridine)N→Si coordination. Unexpectedly, the reaction of [SiNSi]Ge →Fe(CO)4 with GeCl2?(dioxane) (one molar equivalent) yielded the first push–pull germylone–germylene donor–acceptor complex, [SiNSi]Ge →GeCl2→Fe(CO)4 through the insertion of GeCl2 into the dative Ge0→Fe bond. The electronic features of the new compounds were investigated by DFT calculations.  相似文献   

3.
The title compound, N‐(2‐pyridylmethyl)salicylamide ( 1 ), was synthesized by ester aminolysis of methyl salicylate and 2‐picolylamine. In the presence of triethylamine as a supporting base, the salicylamide moiety reacts with the organodichlorosilanes RR′SiCl2 to form the desired six‐membered heterocycles of the type RR′Si–O–(o‐C6H4)–C(=O)N(pic), with pic being the 2‐pyridylmethyl (i.e., 2‐picolyl) moiety and RR′ = Me, Me ( 2a ); Me, Ph ( 2b ); Ph, Ph ( 2c ); Bn, Bn ( 2d ); All, Ph ( 2e ) and Ph, H ( 2f ). Despite the absence of notable ring strain release Lewis acidity (i.e., only a six‐membered chelate is formed by the dianion, and smaller rings are not present in the compound), the poor electron withdrawal from silicon by its C– or H– substituents and the flexible methylene bridge between the salicylamide and the pyridine moiety, the pyridine N donor atom furnishes pentacoordinate silicon coordination spheres in all of these compounds 2a – 2f . The coordination number of the silicon atom was confirmed by single‐crystal X‐ray diffraction analysis for the solid state and by 29Si NMR spectroscopy for the solution state.  相似文献   

4.
A new family of cationic rhenium tricarbonyl complexes with either two N‐alkylimidazole (N‐RIm) and one pyridine (Py) ligand, or two pyridine and one N‐RIm ligand, [Re(CO)3(N‐RIm)(3?x)(Py)x]+, has been prepared. The reaction of these complexes with a strong base, followed by an oxidant, selectively afforded 2,2’‐pyridylimidazole complexes as the result of intramolecular dehydrogenative C?C coupling reactions. For tris(pyridine) complexes [Re(CO)3(Py)3]+ the reaction pattern upon a deprotonation/oxidation sequence is maintained, which allows the generation of complexes with 2,2’‐bipyridine ligands. In the particular combination of two different types of pyridine ligand in the cationic fac‐Re(CO)3 complexes only the cross‐coupling products with asymmetric 2,2’‐bipyridine ligands were obtained; the homocoupling products were not observed.  相似文献   

5.
Treatment of pyridine‐stabilized silylene complexes [(η5‐C5Me4R)(CO)2(H)W?SiH(py)(Tsi)] (R=Me, Et; py=pyridine; Tsi=C(SiMe3)3) with an N‐heterocyclic carbene MeIiPr (1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene) caused deprotonation to afford anionic silylene complexes [(η5‐C5Me4R)(CO)2W?SiH(Tsi)][HMeIiPr] (R=Me ( 1‐Me ); R=Et ( 1‐Et )). Subsequent oxidation of 1‐Me and 1‐Et with pyridine‐N‐oxide (1 equiv) gave anionic η2‐silaaldehydetungsten complexes [(η5‐C5Me4R)(CO)2W{η2‐O?SiH(Tsi)}][HMeIiPr] (R=Me ( 2‐Me ); R=Et ( 2‐Et )). The formation of an unprecedented W‐Si‐O three‐membered ring was confirmed by X‐ray crystal structure analysis.  相似文献   

6.
A series of aminodiphenylphosphanes 1 [Ph2P‐N(H)tBu ( a ), ‐NEt2 ( b ), ‐NiPr2 ( c )], 2 [Ph2P‐NHPh ( a ), ‐NH‐2‐pyridine ( b ), ‐NH‐3‐pyridine ( c ), ‐NH‐4‐pyridine ( d ), NH‐pyrimidine ( e ), NH‐2,6‐Me2‐C6H3 ( f ), NH‐3‐Me‐2‐pyridine ( g )], 3 [Ph2P‐N(Me)Ph ( a ), ‐NPh2 ( b )], and N‐pyrrolyldiphenylphosphane 4 (Ph2P‐NC4H4) was prepared and studied by NMR (1H, 13C, 31P, 15N NMR) spectroscopy. The isotope‐induced chemical shifts 1Δ14/15N(31P) were determined at natural abundance of 15N by using HEED INEPT experiments. A dependence of 1Δ14/15N(31P) on the substituents at nitrogen was found (alkyl < H < aryl; increasingly negative values). The magnitude and sign of the coupling constants 1J(31P,15N) (positive sign) are dominated by the presence of the lone pair of electrons at the phosphorus atom. The X‐ray structural analysis of 2b is reported, showing the presence of dimers owing to intermolecular hydrogen bridges in the solid state. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:542–550, 2001  相似文献   

7.
N‐(trialkoxysilylalkyl) derivatives of 1,2,3,4‐tetrahydroquinoline, 1,2,3,4‐tetrahydroisoquinoline and 4,4‐dimethyl‐4‐sila‐1,2,3,4‐tetrahydroisoquinoline were prepared and characterized by elemental analysis, 1H, 13C and 29Si NMR spectroscopy. In vivo psychotropic properties and in vitro cytotoxic effects of 3‐[N‐(1,2,3,4‐tetrahydroisoquinolyl)]propyltriethoxysilane methiodide and 3‐[N‐(1,2,3,4‐tetrahydroisoquinolyl)]propylsilatrane are reported. Comparative study of 29Si shifts in newly synthesized compounds suggested donor–acceptor interaction between nitrogen and silicon atom, which increased electron density at Si nuclei, revealing a stronger increment of N → Si transannular bond in comparison with N → Si α‐effect. The molecular structure of 3‐[N‐(1,2,3,4‐tetrahydroisoquinolyl)]propylsilatrane features a penta‐coordinate silicon atom having CSiO3 pattern and Si…N intramolecular interaction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
High performance reduced graphene oxide (RGO)‐Nafion (N) thin film electrodes coated on silicon (Si) substrates (RGO‐N/Si) were successfully developed through thermal reduction of GO‐N without delamination from the substrates. The restoration of the RGO‐N nanostructure upon the addition of Nafion was proven by Raman spectroscopy (RS) and field emission scanning electron microscopy, and the restoration mechanism of the RGO‐N nanostructure was proposed. Through the investigation using x‐ray photoelectron spectroscopy (XPS), the polyfluorocarbon from Nafion possessed a function that could prevent the delamination of the RGO sheets from the substrates during the thermal reduction. The RGO‐N/Si samples were later used for the determination of trace heavy metals, such as divalent lead, cadmium and copper ions (Pb2+, Cd2+ and Cu2+, respectively) using square wave anodic stripping voltammetry in a 0.1 M acetate buffer solution (pH 5). Based on the electroanalytical measurements, the RGO‐N/Si samples exhibited a highly linear behavior in the detection of Cd2+, Pb2+ and Cu2+ over the concentration range of 50 nM to 300 nM with detection limits at nM levels. In addition, the RGO‐N/Si samples presented good recoveries of target metals in tap water samples.  相似文献   

9.
Ruthenium(III)‐substituted α‐Keggin‐type silicotungstates with pyridine‐based ligands, [SiW11O39RuIII(Py)]5?, (Py: pyridine ( 1 ), 4‐pyridine‐carboxylic acid ( 2 ), 4,4′‐bipyridine ( 3 ), 4‐pyridine‐acetamide ( 4 ), and 4‐pyridine‐methanol ( 5 )) were prepared by reacting [SiW11O39RuIII(H2O)]5? with the pyridine derivatives in water at 80 °C and then isolated as their hydrated cesium salts. These compounds were characterized using cyclic voltammetry (CV), UV/Vis, IR, and 1H NMR spectroscopy, elemental analysis, titration, and X‐ray absorption near‐edge structure (XANES) analysis (Ru K‐edge and L3‐edge). Single‐crystal X‐ray analysis of compounds 2 , 3 , and 4 revealed that RuIII was incorporated in the α‐Keggin framework and was coordinated by pyridine derivatives through a Ru? N bond. In the solid state, compounds 2 and 3 formed a dimer through π? π interaction of the pyridine moieties, whereas they existed as monomers in solution. CV indicated that the incorporated RuIII–Py was reversibly oxidized into the RuIV–Py derivative and reduced into the RuII–Py derivative.  相似文献   

10.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   

11.
A series of novel C2‐symmetric chiral pyridine β‐amino alcohol ligands have been synthesized from 2,6‐pyridine dicarboxaldehyde, m‐phthalaldehyde and chiral β‐amino alcohols through a two‐step reaction. All their structures were characterized by 1H NMR, 13C NMR and IR. Their enantioselective induction behaviors were examined under different conditions such as the structure of the ligands, reaction temperature, solvent, reaction time and catalytic amount. The results show that the corresponding chiral secondary alcohols can be obtained with high yields and moderate to good enantiomeric excess. The best result, up to 89% ee, was obtained when the ligand 3c (2S,2′R)‐2,2′‐((pyridine‐2,6‐diylbis(methylene))bisazanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was used in toluene at room temperature. The ligand 3g (2S,2′R)‐2,2′‐((1,3‐phenylenebis(methylene))bis(azanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was prepared in which the pyridine ring was replaced by the benzene ring compared to 3c in order to illustrate the unique role of the N atom in the pyridine ring in the inductive reaction. The results indicate that the coordination of the N atom of the pyridine ring is essential in the asymmetric induction reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
1,1′‐Bis(trimethylsilylamino)ferrocene ( 1 ) reacts with two equivalents of butyllithium to give the N,N′‐dilithiated amide ( 2 ) which has already served in the synthesis of various 1,n‐diaza‐(n)ferrocenophanes (n ≥ 3). Addition of pyridine affords the dipyridine adduct 3 which could be isolated and characterised in the solid state by X‐ray crystallography. An N2Li2 bridge is present in 3 , and each lithium atom bears one pyridine ligand. From multinuclear magnetic resonance studies (1H, 7Li, 13C, 29Si, 31P NMR) it appears that important features of the solid state structure of 3 are retained in solution, in particular in the presence of ether or HMPTA [O=P(NMe2)3], whereas the structure is likely to be different in the absence of donor ligands. The optimised gas phase structures [B3LYP/6‐311+G(d,p) level of theory] of the parent compound fc(NHLi‐NH3)2 corresponds closely to that of 3 , whereas that of fc(NHLi)2 reveals an unsymmetrical N2Li2 bridge with one of the lithium atoms in closer contact to the substituted carbon atoms (C1 and C1′) of the cyclopentadienyl rings.  相似文献   

13.
Starting from the pentafluorophenyl ester of 4‐(dimethylamino)benzoic acid, two dual fluorescent amide ligands with aza‐15‐crown‐5 and 2‐(aminomethyl)pyridine were obtained for sensing, respectively, alkali (alkaline‐earth) and transition (heavy) metal cations. The crystal structure of the copper(II) complex is reported. The Cu2+ is coordinated through the pyridine N‐ and amide O‐atoms of two symmetry‐related ligands. The azacrown‐directed Ca‐chelation to the N‐atom of the amide leads to a slight quenching of the two fluorescence bands. In contrast, the pyridine directed CuII‐chelation to the O‐atom of the amide enhances the short‐wavelength emission 17‐fold over the locally excited state (LE), quenching the twisted intramolecular charge‐transfer (TICT) emission, and, as a result, the intensity ratio I(LE)/I(TICT) provides an accurate and sensitive measurement of the CuII concentration. These different cation effects are dependent on which atom (N vs. O) of the amide function participates in cation coordination: while the Ca2+ interaction with the N‐atom electron pair leads to the deconjugation of the amide N‐atom from the fluorophore, Cu2+ interaction with the lone pair of the O‐atom of the carbonyl group increases the energy of the n‐π* but also of the 1La transition and therefore close the channel to the TICT state.  相似文献   

14.
Platinum antitumour agents, containing aromatic rings, which are used for targeting DNA in effective therapies for the treatment of cancer. We have synthesized the title metallocomplex with an aromatic ligand and determined its crystal structure. In many cases, complexes of platinum and other metals have a symmetrical structure. In contrast, the platinum(II) complex with pyridine and N‐(9‐anthracenylmethyl)‐1,2‐ethanediamine as ligands (systematic name: cis‐{N‐[(anthracen‐9‐yl)methyl]ethane‐1,2‐diamine‐κ2N ,N ′}bis(pyridine‐κN )platinum(II) dinitrate), [Pt(C5H5N)2(C17H18N2)](NO3)2, is asymmetric. Of the two pyridine ligands, only one is π‐stacked with anthracene, resulting in an asymmetric structure. Moreover, the angle of orientation of each pyridine ligand is variable. Further examination of the packing motif confirms an intermolecular edge‐to‐face interaction.  相似文献   

15.
The synthesis of an N‐heterocyclic silylene‐stabilized digermanium(0) complex is described. The reaction of the amidinate‐stabilized silicon(II) amide [LSiN(SiMe3)2] ( 1 ; L=PhC(NtBu)2) with GeCl2?dioxane in toluene afforded the SiII–GeII adduct [L{(Me3Si)2N}Si→GeCl2] ( 2 ). Reaction of the adduct with two equivalents of KC8 in toluene at room temperature afforded the N‐heterocyclic carbene silylene‐stabilized digermanium(0) complex [L{(Me3Si)2N}Si→ Ge?Ge←Si{N(SiMe3)2}L] ( 3 ). X‐ray crystallography and theoretical studies show conclusively that the N‐heterocyclic silylenes stabilize the singlet digermanium(0) moiety by a weak synergic donor–acceptor interaction.  相似文献   

16.
In the tridentate ligand 2,6‐bis(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)pyridine, C23H19N7, both sets of triazole N atoms are anti with respect to the pyridine N atom, while in the copper complex aqua[2,6‐bis(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)pyridine](pyridine)(tetrafluoroborato)copper(II) tetrafluoroborate, [Cu(BF4)(C5H5N)(C23H19N7)(H2O)]BF4, the triazole N atoms are in the synsyn conformation. The coordination of the CuII atom is distorted octahedral. The ligand structure is stabilized through intermolecular C—H...N interactions, while the crystal structure of the Cu complex is stabilized through water‐ and BF4‐mediated hydrogen bonds. Photoluminiscence studies of the ligand and complex show that the ligand is fluorescent due to triazole–pyridine conjugation, but that the fluorescence is quenched on complexation.  相似文献   

17.
Facile oxygenation of the acyclic amido‐chlorosilylene bis(N‐heterocyclic carbene) Ni0 complex [{N(Dipp)(SiMe3)ClSi:→Ni(NHC)2] ( 1 ; Dipp=2,6‐iPr2C6H4; N‐heterocyclic carbene=C[(iPr)NC(Me)]2) with N2O furnishes the first Si‐metalated iminosilane, [DippN=Si(OSiMe3)Ni(Cl)(NHC)2] ( 3 ), in a rearrangement cascade. Markedly, the formation of 3 proceeds via the silanone (Si=O)–Ni π‐complex 2 as the initial product, which was predicted by DFT calculations and observed spectroscopically. The Si=O and Si=N moieties in 2 and 3 , respectively, show remarkable hydroboration reactivity towards H−B bonds of boranes, in the former case corroborating the proposed formation of a (Si=O)–Ni π‐complex at low temperature.  相似文献   

18.
The homologous series of parent octamethylcyclotetrasilazane (c‐NH‐SiMe2‐)4, ( 1 ), the lithium complex [(THF)2Li2(c‐N‐SiMe2‐NH‐SiMe2‐)2]2, ( 2 ), containing the cyclic dianion, and [(THF)2LiAl(c‐N‐SiMe2‐)4]2, ( 3 ), accommodating the unprecedented tetraanion [Me2SiN]4‐ was synthesized to investigate the nature of the covalent Si‐N single bond in the presence of various metals. These model compounds show a wide diversity of Si‐N(H), Si‐N(M), Si‐N(H, M) and M‐N bonds and serve as bench‐mark systems to study polar bonds by high‐resolution low‐temperature X‐ray structure analysis. Experimental charge density studies reveal highly polar Si‐N bonds with remarkable ionic contribution, even in the non‐metallated starting material 1 . The Li‐N and Li‐O bonds have to be classified as almost purely ionic bonds with topological properties not far from those determined for NaCl.  相似文献   

19.
In the title compound, [CuCl2(C11H15N3O2)], the CuII ion is five‐coordinated in a strongly distorted trigonal–bipyramidal arrangement, with the two methyl­oxime N atoms located in the apical positions, and the pyridine N and the Cl atoms located in the basal plane. The two axial Cu—N distances are almost equal (mean 2.098 Å) and are substantially longer than the equatorial Cu—N bond [1.9757 (15) Å]. It is observed that the N(oxime)—M—N(pyridine) bond angle for five‐membered chelate rings of 2,6‐diacetyl­pyridine dioxime complexes is inversely related to the magnitude of the M—N(pyridine) bond. The structure is stabilized by intra‐ and inter­molecular C—H⋯Cl hydrogen bonds which involve the methyl H atoms, except for one of the two acetyl­methyl groups.  相似文献   

20.
The title one‐dimensional chain polymer complex, [Mn(C6H4NO3)Cl(C6H5N)2]n, was isolated from the reaction of MnCl2 with 6‐oxo‐1,6‐dihydro­pyridine‐2‐carboxylic acid (HpicOH) in pyridine. The asymmetric unit contains one [Mn(HPicO)Cl(py)2] moiety (py is pyridine), with the (HpicO) ligand acting in a tridentate manner via the two carboxyl­ate O atoms and the pyridone O atom. The operation of inversion centres generates eight‐ and 14‐membered rings and, in conjunction with an a‐axis translation, leads to an infinite chain extending along [100]. The Mn⋯Mn separations in this chain are 5.1069 (6) and 7.1869 (6) Å. The MnII atom has a distorted octahedral coordination, with trans‐axial pyridine ligands and with three O atoms and the Cl atom in the equatorial plane. The conformation of the 14‐membered ring is stabilized by pairs of inversion‐related N—H⋯O hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号