首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transverse magnetic field (TMF) drives the vacuum arc to move along the surface of the contacts to prevent the local overheating and melting of the contact surfaces. The arcing process has great influence on the breaking capacity of short‐circuit current. In this paper, the arcing process between three types of TMF contacts was investigated. The transition process of an arc from the ignition stage to the diffusion stage was discussed. The transition moment, transition gap distance, and transition current were obtained. It was found that the axial magnetic field component of TMF contacts affected the arc transition process.  相似文献   

2.
With the improvement of the current level of power grids, the requirements of the opening level of the vacuum switches are also increasing. Vacuum arc cathode spots provide steam and electrons and, to a certain extent, determine the opening capacity of the vacuum switch. In this paper, a vacuum arc cathode spot research platform based on the de-mountable vacuum chamber is constructed. The characteristics of the vacuum arc cathode spots under the transverse magnetic field (TMF) contacts are assessed by a high-speed charge coupled device. The experimental results show that the cathode spot diffusion process can be divided into three processes through cathode spot distribution, arc voltage and current: initial diffusion stage of cathode spots, unstable motion stage of cathode spots, and extinguishing stage. The motion mode of cathode spots during unstable motion stage can be divided into cathode spots group stagnation (CSGS) to multi-cathode jet (MCJ) switch mode, cathode spots group motion (CSGM) to MCJ switch mode, CSGM mode, and MCJ mode. The effects of peak current and contact diameter on unstable motion mode were analysed.  相似文献   

3.
The cup-shaped transverse magnetic field (TMF) contacts contain radial components and tangential components in the TMF generated when the current is interrupted. The tangential force generated by the radial magnetic field component drives the vacuum arc to rotate, and the tangential magnetic field component generates a radial force that causes the vacuum arc to move radially outward. In this paper, in order to study the influence of the arc force direction on the arc characteristics, the influence of the contact structure parameters such as the inclination of the inner wall on the arc force direction is simulated, and the breaking tests of different levels of current are carried out on the contact with different structure parameters. It is found that the direction of the Lorentz force has a significant effect on the breaking characteristics of the current, and the tangential and radial force components have varying degrees of influence on the motion characteristics of the arc during the start process and the metal droplet splashing.  相似文献   

4.
When double‐break vacuum circuit breakers (VCBs) interrupt the fault current, the series arc will generate their individual magnetic fields in different breaks. The magnetic field in one break will influence the arc in another break if the magnetic field is strong enough or the two breaks are very close. In this case, an interactive magnetic field effect happens. This field is also called the bias magnetic field (BMF). BMF can cause anode erosion and affect the performance at current zero. The distribution of BMF and the optimal configuration of the double‐break VCBs were obtained by the electromagnetic field simulation using the Ansoft Maxwell software. Based on the simulated magnetic field data, in the experiments, the interaction between the series vacuum arcs in double‐break VCBs was equivalent to the interaction between a single vacuum arc and the magnetic field generated by a Helmholtz coil. A high‐speed CMOS camera was used to record the trajectory of the vacuum arc plasma under different BMFs with different types of contacts. The results show the BMF can increase the arc voltage, and the arc becomes unstable. When the BMF becomes stronger, the arc voltage increases, and the arc becomes more unstable. In addition, for different types of contacts, the development process of the arc and the influence level are different under the same BMF. For a Wan‐type transverse magnetic field (TMF) contact or strong BMF, metal sputtering is evident and anode erosion becomes serious. For a cup‐type axial magnetic field (AMF) contact, the influence of BMF on the series arc plasma in double‐break VCBs is less than that of the Wan‐type TMF contact. The results of this work may be helpful for the design of compact double‐break VCBs.  相似文献   

5.
为了了解纵向磁场下的电弧运动过程,建立了真空灭弧室的3维仿真模型。采用PIC模拟方法对12 kV灭弧室内的电磁场、电弧运动特性进行计算仿真。通过改变触头间距、屏蔽罩尺寸和触头开槽宽度,研究了灭弧室内的电场、磁场分布;对不同触头间距下随时间变化的电弧运动过程和触头表面的电弧分布情况进行了模拟计算。计算结果表明:在真空灭弧室中适当设置屏蔽罩,可有效改善灭弧室内的电场分布;触头铜基上的开槽宽度对磁场会产生影响,宽度越大,磁场强度越大。  相似文献   

6.
In this letter, a multi‐arc generator with three high‐voltage electrodes and a common grounded one was developed for the purpose of obtaining large area and steady arc plasma at atmospheric pressure. Three typical discharge states were found in the multi‐arc generator: independent movement of three arc columns, confluence of two arc columns, and confluence of three arc columns. The three discharge states cyclically occur on the evolution of the arc discharge and their duration is influenced by the power dissipation and plasma working gas flow rate. With an increase of discharge power and a decrease of the gas flow rate, the duration of multiple arc confluence increases, which contributes to the suppression of the fluctuation amplitude of each arc. Frequency domain analysis of the arc voltage envelope shows that the frequency of arc fluctuation increases in the multi‐arc mode in the multi‐arc generator compared to that in the single arc mode.  相似文献   

7.
High-current vacuum arcs drawn between commercial radial-magnetic field, chromium-copper contacts were studied by high-speed photography. The aim of the investigation was to study phenomena of relevance to high-current interruption, such as arc constriction and arc motion. The arcs were drawn at contact opening speeds typical of commercial devices, are duration being 10 ms or less. The arcs were `short' for much of their lifetime, and strong electrode-discharge coupling could be expected. Such arcs are also of principal interest. Arc behavior was found to be strongly influenced by the gap length d and the arc current I. No diffuse mode was observed at d less the dmin≈4 mm and at instantaneous currents I above Imax±25 kA. The diffuse discharge mode was assumed more readily when d was large. At d below 2 mm, the arcs could not be moved by a magnetic field. Increasing both I and d resulted in an increase of the probability and duration of arc motion and of the arc path length. Arc speed was often irregular, showing that arc motion is also affected by parameters other than the purely electrodynamic ones  相似文献   

8.
真空电弧的特性直接受到从阴极斑点喷射出的等离子体射流的影响,对等离子体射流进行数值仿真有助于我们深入了解真空电弧的内部物理机制.然而,磁流体动力学和粒子云网格仿真方法受限于计算精度和计算效率的原因,无法有效地应用于真空电弧等离子体射流仿真模拟.本文开发了一套三维等离子体混合模拟算法,并在此基础上建立了真空电弧单阴极斑点射流仿真模型,模型中将离子作宏粒子考虑,而电子作无质量流体处理,仿真计算了自生电磁场与外施纵向磁场作用下等离子体的分布运动状态.仿真结果表明,单个阴极斑点情况下真空等离子体射流在离开阴极斑点后扩散至极板间,其整体几何形状为圆锥形,离子密度从阴极到阳极快速下降.外施纵向磁场会压缩等离子体,使得等离子体射流径向的扩散减少并且轴线上的离子密度升高.随着外施纵向磁场的增大,其对等离子体射流的压缩效应增强,表现为等离子体射流的扩散角度逐渐减小.此外,外施纵向磁场对等离子体射流的影响也受到电弧电流大小的影响,压缩效应随电弧电流的增加而逐渐减弱.  相似文献   

9.
A framing camera is used to photograph the vacuum arc between separating spiral-petal vacuum interrupter contacts. The rupture of the molten bridge between the contacts first leads to a high-pressure, transient arc column. This arc motion can become constricted for several milliseconds before it goes diffuse as the current decreases to zero. The current through the spiral contacts produces a magnetic field perpendicular to the arc column, which forces the arc to move outward and run along the periphery of the petals. Several vacuum arc modes occur during the half-cycle of high current arcing. Movies, gap-current curves, and arc voltage traces are used to study the development of the arc motion and how it is affected by the contact structure. This information is used to generate arc appearance diagrams in which the arc form and motion are correlated to instantaneous values of current and gap for a wide range of peak currents. Appearance diagrams are shown for two ranges of opening delay from current onset  相似文献   

10.
An arc plasma can present various forms under the influence of an external magnetic field. In this study, a magnetically rotating arc plasma generator has been developed to produce three arc modes, namely rigid arc, distorted arc, and diffuse arc, which are obtained by controlling the gas flow rate. The evolution of these arc modes are experimentally studied and discussed. Results show that, as the gas flow rate increases, the arc mode is first transformed from the rigid to the distorted mode, and then to the diffuse mode. Comparisons show that the location of the arc attachment is a key factor in determining the rigid and distorted modes. The diffuse arc is observed under larger gas flow rates, but the completely diffuse arc can exist only within a narrow range of gas flow rates. Compared to the distorted arc, the diffuse arc has not only better stability but also a wider high‐temperature plasma zone, which indicates that the diffuse mode may be more useful in industry.  相似文献   

11.
周祥曼  张海鸥  王桂兰  柏兴旺 《物理学报》2016,65(3):38103-038103
电弧增材成形常采用单道多层或多道搭接的熔积方式,不同的熔积方式下对应的熔积层表面形貌不同,从而影响电弧的形态及其传热传质过程.本文建立了纯氩保护电弧增材成形的电弧磁流体动力学三维数值模型,以及不同表面形貌的熔积层模型,并在保持阳极与阴极之间距离和熔积电流不变的条件下,通过模拟计算获得增材成形特有的单道和多道搭接熔积条件下的不同表面形貌对应的电弧形态以及相应的温度场、流场、电流密度、电磁力、电弧压力分布.数值模拟结果表明:平面基板上起弧情况下电弧中心具有较高的温度、速度、电流密度以及压强;单道多层熔积情况下熔积层数对电弧的各个参量影响较小;多道搭接熔积情况下电弧呈非对称分布,电弧中心温度较前两者低,电流密度、电磁力和电弧压强的分布偏向熔积层一侧.  相似文献   

12.
超声复合电弧声调控特性研究   总被引:3,自引:2,他引:1       下载免费PDF全文
谢伟峰  范成磊  杨春利  林三宝  张玉岐 《物理学报》2015,64(9):95201-095201
超声复合电弧作为一种新的焊接热源, 在电弧焊接过程中可利用超声实现对熔融金属的深度处理, 但是超声与电弧等离子体间相互作用机理还不清晰, 这成为阻碍该技术工程应用的关键问题. 本文通过实验与相应理论针对外加超声场对焊接电弧调控特性进行了研究. 为说明电弧特性, 针对试验中高速摄像采集的电弧图片进行了处理. 对比未加超声情况, 超声复合电弧受内外声场共同作用等离子体拘束程度明显提高, 电弧亮度增强, 弧柱高温区范围扩展至阳极, 中间粒子出现团聚并以一定频率上下抖动. 通过改变超声激励电流大小和声发射端高度, 电弧结构产生显著变化, 在谐振点附近, 电弧挺直度最强, 脉动频率最大. 试验结果显示通过外加超声可以达到对焊接电弧热等离子体调控的目的. 最后结合波动方程和二维声边界元模型, 分析了电弧内部声传播过程以及声场结构对等离子体粒子的作用规律, 这为进一步理解超声对电弧的调控机理打下良好基础.  相似文献   

13.
Our new vacuum arc control technology SADE doubles the high current interruption capability of our conventional axial magnetic field technology. First, we describe the vacuum arc motion behavior recorded by a high speed charge-coupled device video camera. This arc behavior is closely related to axial magnetic field intensity. In particular, it depends on the profile of the externally generated axial magnetic field. The anode spot is likely to move to the highest magnetic field intensity. Second, we describe analytical results for concentration of vacuum arc at the anode side contact surface. This analysis implies the possibility of an ideal magnetic field profile and intensity for vacuum arc control. Finally, we describe experimental results for vacuum arc control compared with the physical and theoretical results mentioned above, and we show a practical electrode configuration for vacuum interrupters and its application in a high current interruption experiment  相似文献   

14.
In this paper a commercial CFD (computational fluid dynamics) code FLUENT has been used and modified for the axisymmetric swirl and time-dependent simulation of an atmospheric pressure argon arc in an external axial magnetic field (AMF). The computational domain includes the arc itself and the anodic region. Numerical results demonstrate that the AMF substantially increases the tangential component of the plasma velocity. The resulting centrifugal force for the plasma rotation impels it to travel to the arc mantel and as a result, a low-pressure region appears at the arc core. With the AMF, the arc presents a hollow bell shape and correspondingly, the maximal values of the temperature, pressure and current density on the anode surface are departing from the arc centreline.  相似文献   

15.
This study aims to investigate the arc plasma shape and the spectral characteristics during the laser assisted pulsed arc welding process. The arc plasma shape was synchronously observed using a high speed camera, and the emission spectrum of plasma was obtained by spectrometer. The well-known Boltzmann plot method and Stark broadening were used to calculate the electron temperature and density respectively. The conductive mechanism of arc ignition in laser assisted arc hybrid welding was investigated, and it was found that the plasma current moved to the arc anode under the action of electric field. Thus, a significant parabolic channel was formed between the keyhole and the wire tip. This channel became the main method of energy transformation between the arc and the molten pool. The calculation results of plasma resistivity show that the laser plasma has low resistivity as the starting point of conductive channel formation. When the laser pulse duration increases, the intensity of the plasma radiation spectrum and the plasma electron density will increase, and the electron temperature will decrease.  相似文献   

16.
To optimize thrust performance, the expression of space-charge-limited current for vacuum arc thruster is derived from Poisson's equation. The commonly used ring-type and coaxial-type vacuum arc thrusters are simplified to the equivalent current sheet in planar geometry and cylindrical capacitor, respectively, for this calculation. Both the spatial distribution and peak magnitude of space-charge-limited current are given explicitly, together with their dependences on gap distance, applied voltage, charge number, and ion mass. For typical experimental parameters of the vacuum arc thruster, it is shown that the maximum current density drops significantly when the gap distance becomes large and grows when the applied voltage increases; moreover, a cathode material of lower atomic weight yields a higher current density. The expressions of total current for these two types of vacuum arc thruster are also presented. This work, to our best knowledge, is the first application of space-charge-limited current to the vacuum arc thruster and practically very interesting for engineering design.  相似文献   

17.
根据磁流体动力学方程组,建立了微束等离子电弧模型,使用有限元分析软件COMSOL进行模拟计算。结果表明,电弧中心温度分布从钨针至焊件整体呈“毛笔”状,其中,喷嘴下方电弧形态呈“钟罩”形,在焊件上温度分布符合高斯分布特征;电弧等离子体在喷嘴内部速度较大,离开喷嘴后,其方向由喷嘴内的竖直向下逐渐变为到达工件时的向四周扩散;电流由焊件表面流出,经过弧柱区域流入钨针下端面,在钨针下端面附近取得最大值;电弧磁通密度分布呈“肺叶”状。最后进行了相应的熔焊试验,试验过程中拍摄的电弧轮廓与仿真电弧形态基本一致。  相似文献   

18.
The arc discharge plasma actuator (ADPA) has wide application prospects in high‐speed flow control because of its local heating effect and strong disturbance. In this paper, the influence of ambient pressure, which ranges from 3 to 20 kPa, on the performance of a two‐electrode ADPA is investigated by a schlieren system. The duration of the arc heated region, as well as its area, is extracted by image processing. As the ambient pressure increases, different flow field evolutions occur. The duration of the ADPA heated region increases with the ambient pressure. The maximum duration reaches 1185.3 µs at 20 kPa. The velocity of the discharge‐induced blast shock wave first decreases gradually and then remains at 345 m/s for all air pressures. The blast shock wave has a higher velocity at lower pressures when it is freshly produced. A maximum blast shock wave velocity of 582 m/s is observed at the pressure of 7 kPa. The arc heated region is not sensitive to ambient pressure, but the deposited energy from the arc increases when the pressure increases.  相似文献   

19.
The application of small gaps in high-current vacuum interrupters highlights the interdependence of the contact design, the contact gap, and the arc behavior. In this investigation, a framing camera was used to record the appearance and motion of drawn vacuum arcs between spiral-petal contacts with final gaps of 2 to 3 mm. After the rupture of the molten metal bridge, a high-pressure arc column formed and expanded across the width of the spiral arm. With a single arc column for the duration of the half-cycle, an intense anode spot formed if the peak current exceeded ~15 kA. Compared to results previously obtained at larger gaps, the arc motion was greatly reduced, and severe contact damage was observed at lower currents  相似文献   

20.
通过耦合迭代求解流体力学方程和电磁场方程,数值模拟了转移式自由燃烧电弧和具有细长中间段及突扩阳极结构的壁稳式非转移直流电弧的流场,分析了洛伦兹力对这两种典型直流电弧流场的影响。结果显示:在自由燃烧电弧情况下,电流自感磁场的洛伦兹力对流场特性有显著影响,自磁压缩是约束电弧的主要机制;而在壁稳式非转移直流电弧情况下,相对于强壁面约束和气动力作用而言,洛伦兹力对流场的影响有限。特别在中间段出口以后,洛伦兹力与气动力的比值小于0.010,因此,当主要考虑壁稳式非转移直流电弧发生器出口参数时,为了提高数值模拟效率,可忽略洛伦兹力的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号