首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 1‐factorization of a graph G is a collection of edge‐disjoint perfect matchings whose union is E(G). In this paper, we prove that for any ?>0, an (n,d,λ)‐graph G admits a 1‐factorization provided that n is even, C0dn?1 (where C0=C0(?) is a constant depending only on ?), and λd1??. In particular, since (as is well known) a typical random d‐regular graph Gn,d is such a graph, we obtain the existence of a 1‐factorization in a typical Gn,d for all C0dn?1, thereby extending to all possible values of d results obtained by Janson, and independently by Molloy, Robalewska, Robinson, and Wormald for fixed d. Moreover, we also obtain a lower bound for the number of distinct 1‐factorizations of such graphs G, which is better by a factor of 2nd/2 than the previously best known lower bounds, even in the simplest case where G is the complete graph.  相似文献   

2.
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance dG(u, v) is at least dC(u, v)?e(n). Let ω(n) be any function tending to infinity with n. We consider a random d‐regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n) = logd?1logd?1n+ ω(n) and |C| = 2logd?1n+ O(ω(n)). Along the way, we obtain results on near‐geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. Copyright © 2010 John Wiley & Sons, Ltd. J Graph Theory 66:115‐136, 2011  相似文献   

3.
We find the asymptotic total variation distance between two distributions on configurations of m balls in n labeled bins: in the first, each ball is placed in a bin uniformly at random; in the second, k balls are planted in an arbitrary but fixed arrangement and the remaining mk balls placed uniformly at random. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

4.
Let I be a random 3CNF formula generated by choosing a truth assignment ? for variables x1, xn uniformly at random and including every clause with i literals set true by ? with probability pi, independently. We show that for any constants 0 ≤ η23 ≤ 1 there is a constant dmin so that for all ddmin a spectral algorithm similar to the graph coloring algorithm of Alon and Kahale will find a satisfying assignment with high probability for p1 = d/n2, p2 = η2d/n2, and p3 = η3d/n2. Appropriately setting the ηi's yields natural distributions on satisfiable 3CNFs, not‐all‐equal‐sat 3CNFs, and exactly‐one‐sat 3CNFs. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

5.
Suppose G is a graph of n vertices and diameter at most d having the property that, after deleting any vertex, the resulting subgraph has diameter at most 6. Then G contains at least max{n, (4n - 8)/3} edges if 4 ≤ d ≤ 6.  相似文献   

6.
Let G be a graph of order n and k ≥ 0 an integer. It is conjectured in [8] that if for any two vertices u and v of a 2(k + 1)‐connected graph G,d G (u,v) = 2 implies that max{d(u;G), d(v;G)} ≥ (n/2) + 2k, then G has k + 1 edge disjoint Hamilton cycles. This conjecture is true for k = 0, 1 (see cf. [3] and [8]). It will be proved in this paper that the conjecture is true for every integer k ≥ 0. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 8–20, 2000  相似文献   

7.
It is well known that the number of designs with the parameters of a classical design having as blocks the hyperplanes in PG(n, q) or AG(n, q), n?3, grows exponentially. This result was extended recently [5] to designs having the same parameters as a projective geometry design whose blocks are the d‐subspaces of PG(n, q), for any 2?d?n ? 1. In this paper, exponential lower bounds are proved on the number of non‐isomorphic designs having the same parameters as an affine geometry design whose blocks are the d‐subspaces of AG(n, q), for any 2≤dn ? 1. Exponential bounds are also proved for the number of resolvable designs with these parameters. © 2011 Wiley Periodicals, Inc. J Combin Designs 19:156‐166, 2011  相似文献   

8.
Let G3‐out denote the random graph on vertex set [n] in which each vertex chooses three neighbors uniformly at random. Note that G3‐out has minimum degree 3 and average degree 6. We prove that the probability that G3‐out is Hamiltonian goes to 1 as n tends to infinity. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

9.
A choice set for a computable linear ordering is a set which contains one element from each maximal block of the ordering. We obtain a partial characterization of the computable linear order‐types for which each computable model has a computable choice set, and a full characterization in the relativized case; Every model of the linear order‐type α of degree ≤ d has a choice set of degree ≤ d iff α can written as a finite sum of order‐types, each of which either has finitely many blocks, or has order‐type n · η for some integer n.  相似文献   

10.
Let n be an integer and q be a prime power. Then for any 3 ≤ nq?1, or n=2 and q odd, we construct a connected q‐regular edge‐but not vertex‐transitive graph of order 2qn+1. This graph is defined via a system of equations over the finite field of q elements. For n=2 and q=3, our graph is isomorphic to the Gray graph. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 249–258, 2002  相似文献   

11.
It is well‐known that the number of designs with the parameters of a classical design having as blocks the hyperplanes in PG(n, q) or AG(n, q), n≥3, grows exponentially. This result was extended recently [D. Jungnickel, V. D. Tonchev, Des Codes Cryptogr, published online: 23 May, 2009] to designs having the same parameters as a projective geometry design whose blocks are the d‐subspaces of PG(n, q), for any 2≤dn−1. In this paper, exponential lower bounds are proved on the number of non‐isomorphic designs having the same parameters as an affine geometry design whose blocks are the d‐subspaces of AG(n, q), for any 2≤dn−1, as well as resolvable designs with these parameters. An exponential lower bound is also proved for the number of non‐isomorphic resolvable 3‐designs with the same parameters as an affine geometry design whose blocks are the d‐subspaces of AG(n, 2), for any 2≤dn−1. © 2010 Wiley Periodicals, Inc. J Combin Designs 18: 475–487, 2010  相似文献   

12.
Let G be a connected graph with odd girth 2κ+1. Then G is a (2κ+1)‐angulated graph if every two vertices of G are connected by a path such that each edge of the path is in some (2κ+1)‐cycle. We prove that if G is (2κ+1)‐angulated, and H is connected with odd girth at least 2κ+3, then any retract of the box (or Cartesian) product GH is ST where S is a retract of G and T is a connected subgraph of H. A graph G is strongly (2κ+1)‐angulated if any two vertices of G are connected by a sequence of (2κ+1)‐cycles with consecutive cycles sharing at least one edge. We prove that if G is strongly (2κ+1)‐angulated, and H is connected with odd girth at least 2κ+1, then any retract of GH is ST where S is a retract of G and T is a connected subgraph of H or |V(S)|=1 and T is a retract of H. These two results improve theorems on weakly and strongly triangulated graphs by Nowakowski and Rival [Disc Math 70 ( 13 ), 169–184]. As a corollary, we get that the core of the box product of two strongly (2κ+1)‐angulated cores must be either one of the factors or the box product itself. Furthermore, if G is a strongly (2κ+1)‐angulated core, then either Gn is a core for all positive integers n, or the core of Gn is G for all positive integers n. In the latter case, G is homomorphically equivalent to a normal Cayley graph [Larose, Laviolette, Tardiff, European J Combin 19 ( 12 ), 867–881]. In particular, let G be a strongly (2κ+1)‐angulated core such that either G is not vertex‐transitive, or G is vertex‐transitive and any two maximum independent sets have non‐empty intersection. Then Gn is a core for any positive integer n. On the other hand, let Gi be a (2κi+1)‐angulated core for 1 ≤ in where κ1 < κ2 < … < κn. If Gi has a vertex that is fixed under any automorphism for 1 ≤ in‐1, or Gi is vertex‐transitive such that any two maximum independent sets have non‐empty intersection for 1 ≤ in‐1, then □i=1n Gi is a core. We then apply the results to construct cores that are box products with Mycielski construction factors or with odd graph factors. We also show that K(r,2r+1) □ C2l+1 is a core for any integers lr ≥ 2. It is open whether K(r,2r+1) □ C2l+1 is a core for r > l ≥ 2. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

13.
Many dynamic resource allocation and on‐line load balancing problems can be modeled by processes that sequentially allocate balls into bins. The balls arrive one by one and are to be placed into bins on‐line without using a centralized controller. If n balls are sequentially placed into n bins by placing each ball in a randomly chosen bin, then it is widely known that the maximum load in bins is ln n /ln ln n?(1+o(1)) with high probability. Azar, Broder, Karlin, and Upfal extended this scheme, so that each ball is placed sequentially into the least full of d randomly chosen bins. They showed that the maximum load of the bins reduces exponentially and is ln ln n/In d+Θ(1) with high probability, provided d<2. In this paper we investigate various extensions of these schemes that arise in applications in dynamic resource allocation and on‐line load balancing. Traditionally, the main aim of allocation processes is to place balls into bins to minimize the maximum load in bins. However, in many applications it is equally important to minimize the number of choices performed (the allocation time). We study adaptive allocation schemes that achieve optimal tradeoffs between the maximum load, the maximum allocation time, and the average allocation time. We also investigate allocation processes that may reallocate the balls. We provide a tight analysis of a natural class of processes that each time a ball is placed in one of d randomly chosen bins may move balls among these d bins arbitrarily. Finally, we provide a tight analysis of the maximum load of the off‐line process in which each ball may be placed into one of d randomly chosen bins. We apply this result to competitive analysis of on‐line load balancing processes. ©2001 John Wiley & Sons, Inc. Random Struct. Alg., 18: 297–331, 2001  相似文献   

14.
We show that almost surely the rank of the adjacency matrix of the Erd?s‐Rényi random graph G(n,p) equals the number of nonisolated vertices for any c ln n/np ≤ 1/2, where c is an arbitrary positive constant larger than 1/2. In particular, the adjacency matrix of the giant component (a.s.) has full rank in this range. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

15.
Broadcasting algorithms are important building blocks of distributed systems. In this work we investigate the typical performance of the classical and well‐studied push model. Assume that initially one node in a given network holds some piece of information. In each round, every one of the informed nodes chooses independently a neighbor uniformly at random and transmits the message to it. In this paper we consider random networks where each vertex has degree d ≥ 3, i.e., the underlying graph is drawn uniformly at random from the set of all d ‐regular graphs with n vertices. We show that with probability 1 ‐ o(1) the push model broadcasts the message to all nodes within (1 + o(1))Cd lnn rounds, where Particularly, we can characterize precisely the effect of the node degree to the typical broadcast time of the push model. Moreover, we consider pseudo‐random regular networks, where we assume that the degree of each node is very large. There we show that the broadcast time is (1 + o(1))Clnn with probability 1 ‐ o(1), where \begin{align*}C = \lim_{d\to\infty}C_d = \frac{1}{\ln2} + 1\end{align*}. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

16.
Motivated by a problem that arises in the study of mirrored storage systems, we describe, for any fixed ε, δ > 0, and any integer d ≥ 2, explicit or randomized constructions of d‐regular graphs on n > n0(ε, δ) vertices in which a random subgraph obtained by retaining each edge, randomly and independently, with probability , is acyclic with probability at least 1 ? δ. On the other hand we show that for any d‐regular graph G on n > n1(ε, δ) vertices, a random subgraph of G obtained by retaining each edge, randomly and independently, with probability , does contain a cycle with probability at least 1 ? δ. The proofs combine probabilistic and combinatorial arguments, with number theoretic techniques. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

17.
An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one. The least positive integer k for which there exists an equitable coloring of a graph G with k colors is said to be the equitable chromatic number of G and is denoted by χ=(G). The least positive integer k such that for any k′ ≥ k there exists an equitable coloring of a graph G with k′ colors is said to be the equitable chromatic threshold of G and is denoted by χ=*(G). In this paper, we investigate the asymptotic behavior of these coloring parameters in the probability space G(n,p) of random graphs. We prove that if n?1/5+? < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) = (1 + o(1))χ(G(n,p)) holds (where χ(G(n,p)) is the ordinary chromatic number of G(n,p)). We also show that there exists a constant C such that if C/n < p < 0.99, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) ≤ (2 + o(1))χ(G(n,p)). Concerning the equitable chromatic threshold, we prove that if n?(1??) < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=* (G(n,p)) ≤ (2 + o(1))χ(G(n,p)) holds, and if < p < 0.99 for some 0 < ?, then almost surely we have χ(G(n,p)) ≤ χ=*(G(n,p)) = O?(χ(G(n,p))). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

18.
Let k be a fixed integer and fk(n, p) denote the probability that the random graph G(n, p) is k‐colorable. We show that for k≥3, there exists dk(n) such that for any ϵ>0, (1) As a result we conclude that for sufficiently large n the chromatic number of G(n, d/n) is concentrated in one value for all but a small fraction of d>1. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 14, 63–70, 1999  相似文献   

19.
A graph G is 3‐domination critical if its domination number γ is 3 and the addition of any edge decreases γ by 1. Let G be a 3‐connected 3‐domination critical graph of order n. In this paper, we show that there is a path of length at least n?2 between any two distinct vertices in G and the lower bound is sharp. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 76–85, 2002  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号