首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For the Queens_n 2 graph coloring problems no chromatic numbers are available for n > 9 except where n is not a multiple of 2 or 3. In this paper we propose an exact algorithm that takes advantage of the particular structure of these graphs. The algorithm works on the independent sets of the graph rather than on the vertices to be colored. It combines branch and bound, for independent set assignment, with a clique based filtering procedure. A first experimentation of this approach provided the coloring number values ranging for n = 10 to n = 14.  相似文献   

2.
The clique number of an undirected graph G is the maximum order of a complete subgraph of G and is a well‐known lower bound for the chromatic number of G. Every proper k‐coloring of G may be viewed as a homomorphism (an edge‐preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natural notion of (oriented) colorings and oriented chromatic number of oriented graphs. An oriented clique is then an oriented graph whose number of vertices and oriented chromatic number coincide. However, the structure of oriented cliques is much less understood than in the undirected case. In this article, we study the structure of outerplanar and planar oriented cliques. We first provide a list of 11 graphs and prove that an outerplanar graph can be oriented as an oriented clique if and only if it contains one of these graphs as a spanning subgraph. Klostermeyer and MacGillivray conjectured that the order of a planar oriented clique is at most 15, which was later proved by Sen. We show that any planar oriented clique on 15 vertices must contain a particular oriented graph as a spanning subgraph, thus reproving the above conjecture. We also provide tight upper bounds for the order of planar oriented cliques of girth k for all .  相似文献   

3.
A graph coloring game introduced by Bodlaender (Int J Found Comput Sci 2:133–147, 1991) as coloring construction game is the following. Two players, Alice and Bob, alternately color vertices of a given graph G with a color from a given color set C, so that adjacent vertices receive distinct colors. Alice has the first move. The game ends if no move is possible any more. Alice wins if every vertex of G is colored at the end, otherwise Bob wins. We consider two variants of Bodlaender’s graph coloring game: one (A) in which Alice has the right to have the first move and to miss a turn, the other (B) in which Bob has these rights. These games define the A-game chromatic number resp. the B-game chromatic number of a graph. For such a variant g, a graph G is g-perfect if, for every induced subgraph H of G, the clique number of H equals the g-game chromatic number of H. We determine those graphs for which the game chromatic numbers are 2 and prove that the triangle-free B-perfect graphs are exactly the forests of stars, and the triangle-free A-perfect graphs are exactly the graphs each component of which is a complete bipartite graph or a complete bipartite graph minus one edge or a singleton. From these results we may easily derive the set of triangle-free game-perfect graphs with respect to Bodlaender’s original game. We also determine the B-perfect graphs with clique number 3. As a general result we prove that complements of bipartite graphs are A-perfect.   相似文献   

4.
Given a graph G and an integer k, two players take turns coloring the vertices of G one by one using k colors so that neighboring vertices get different colors. The first player wins iff at the end of the game all the vertices of G are colored. The game chromatic number χg(G) is the minimum k for which the first player has a winning strategy. In this study, we analyze the asymptotic behavior of this parameter for a random graph Gn,p. We show that with high probability, the game chromatic number of Gn,p is at least twice its chromatic number but, up to a multiplicative constant, has the same order of magnitude. We also study the game chromatic number of random bipartite graphs. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

5.
A b‐coloring is a coloring of the vertices of a graph such that each color class contains a vertex that has a neighbor in all other color classes, and the b‐chromatic number of a graph G is the largest integer k such that G admits a b‐coloring with k colors. A graph is b‐perfect if the b‐chromatic number is equal to the chromatic number for every induced subgraph of G. We prove that a graph is b‐perfect if and only if it does not contain as an induced subgraph a member of a certain list of 22 graphs. This entails the existence of a polynomial‐time recognition algorithm and of a polynomial‐time algorithm for coloring exactly the vertices of every b‐perfect graph. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:95–122, 2012  相似文献   

6.
Given a graph G and an ordering p of its vertices, denote by A(G, p) the number of colors used by the greedy coloring algorithm when applied to G with vertices ordered by p. Let , , Δ be positive constants. It is proved that for each n there is a graph Gn such that the chromatic number of Gn is at most n, but the probability that A(Gn, p) < (1 − )n/log2 n for a randomly chosen ordering p is O(n−Δ).  相似文献   

7.
choice number of a graph G is the minimum integer k such that for every assignment of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from S(v). It is shown that the choice number of the random graph G(n, p(n)) is almost surely whenever . A related result for pseudo-random graphs is proved as well. By a special case of this result, the choice number (as well as the chromatic number) of any graph on n vertices with minimum degree at least in which no two distinct vertices have more than common neighbors is at most . Received: October 13, 1997  相似文献   

8.
We study Beck-like coloring of partially ordered sets (posets) with a least element 0. To any poset P with 0 we assign a graph (called a zero-divisor graph) whose vertices are labelled by the elements of P with two vertices x,y adjacent if 0 is the only element lying below x and y. We prove that for such graphs, the chromatic number and the clique number coincide. Also, we give a condition under which posets are not finitely colorable.  相似文献   

9.
We consider the problem of clique‐coloring, that is coloring the vertices of a given graph such that no maximal clique of size at least 2 is monocolored. Whereas we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, the existence of a constant C such that any perfect graph is C‐clique‐colorable is an open problem. In this paper we solve this problem for some subclasses of odd‐hole‐free graphs: those that are diamond‐free and those that are bull‐free. We also prove the NP‐completeness of 2‐clique‐coloring K4‐free perfect graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 233–249, 2006  相似文献   

10.
Angsuman Das 《代数通讯》2013,41(11):4724-4731
In this paper, the authors introduce a graph structure, called subspace inclusion graph ?n(𝕍) on a finite dimensional vector space 𝕍 where the vertex set is the collection of nontrivial proper subspaces of a vector space and two vertices are adjacent if one is contained in other. The diameter, girth, clique number, and chromatic number of ?n(𝕍) are studied. It is shown that two subspace inclusion graphs are isomorphic if and only if the base vector spaces are isomorphic. Finally, some properties of subspace inclusion graph are studied when the base field is finite.  相似文献   

11.
A harmonious coloring of a simple graph G is a coloring of the vertices such that adjacent vertices receive distinct colors and each pair of colors appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colors in such a coloring. We improve an upper bound on h(G) due to Lee and Mitchem, and give upper bounds for related quantities.  相似文献   

12.
The weak chromatic number, or clique chromatic number (CCHN) of a graph is the minimum number of colors in a vertex coloring, such that every maximal clique gets at least two colors. The weak chromatic index, or clique chromatic index (CCHI) of a graph is the CCHN of its line graph.Most of the results here are upper bounds for the CCHI, as functions of some other graph parameters, and contrasting with lower bounds in some cases. Algorithmic aspects are also discussed; the main result within this scope (and in the paper) shows that testing whether the CCHI of a graph equals 2 is NP-complete. We deal with the CCHN of the graph itself as well.  相似文献   

13.
A ρ‐mean coloring of a graph is a coloring of the edges such that the average number of colors incident with each vertex is at most ρ. For a graph H and for ρ ≥ 1, the mean Ramsey–Turán number RT(n, H,ρ ? mean) is the maximum number of edges a ρ‐mean colored graph with n vertices can have under the condition it does not have a monochromatic copy of H. It is conjectured that where is the maximum number of edges a k edge‐colored graph with n vertices can have under the condition it does not have a monochromatic copy of H. We prove the conjecture holds for . We also prove that . This result is tight for graphs H whose clique number equals their chromatic number. In particular, we get that if H is a 3‐chromatic graph having a triangle then . © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 126–134, 2006  相似文献   

14.
A star coloring of an undirected graph G is a proper vertex coloring of G (i.e., no two adjacent vertices are assigned the same color) such that no path on four vertices is 2‐colored. The star chromatic number of G is the smallest integer k for which G admits a star coloring with k colors. In this paper, we prove that every subcubic graph is 6‐star‐colorable. Moreover, the upper bound 6 is best possible, based on the example constructed by Fertin, Raspaud, and Reed (J Graph Theory 47(3) (2004), 140–153).  相似文献   

15.
《Quaestiones Mathematicae》2013,36(2):183-190
Abstract

The m'th chromatic number Xm(G) of a graph G is the least number of colours required to colour the vertices of G such that no m-clique of G is mono-coloured. For each k ≥ 2 and m ≥ 2 we determine for which r a graph G with m'th chromatic number k and clique number r exists. We also determine for which n a graph G exists with Xn (G + K) = Xm (G) = k.  相似文献   

16.
Given a graph H , a graph G is called a Ramsey graph of H if there is a monochromatic copy of H in every coloring of the edges of G with two colors. Two graphs G , H are called Ramsey equivalent if they have the same set of Ramsey graphs. Fox et al. (J Combin Theory Ser B 109 (2014), 120–133) asked whether there are two nonisomorphic connected graphs that are Ramsey equivalent. They proved that a clique is not Ramsey equivalent to any other connected graph. Results of Ne?et?il et al. showed that any two graphs with different clique number (Combinatorica 1(2) (1981), 199–202) or different odd girth (Comment Math Univ Carolin 20(3) (1979), 565–582) are not Ramsey equivalent. These are the only structural graph parameters we know that “distinguish” two graphs in the above sense. This article provides further supportive evidence for a negative answer to the question of Fox et al. by claiming that for wide classes of graphs, the chromatic number is a distinguishing parameter. In addition, it is shown here that all stars and paths and all connected graphs on at most five vertices are not Ramsey equivalent to any other connected graph. Moreover, two connected graphs are not Ramsey equivalent if they belong to a special class of trees or to classes of graphs with clique‐reduction properties.  相似文献   

17.
Suppose that G is a finite simple graph and w is a weight function which assigns to each vertex of G a nonnegative real number. Let C be a circle of length t. A t-circular coloring of (G, w) is a mapping Δ of the vertices of G to arcs of C such that Δ(x)∩Δ(y) = 0 if (x, y) ∈ E(G) and Δ(x) has length w(x). The circular-chromatic number of (G, w) is the least t for which there is a t-circular coloring of (G, w). This paper discusses basic properties of circular chromatic number of a weighted graph and relations between this parameter and other graph parameters. We are particularly interested in graphs G for which the circular-chromatic number of (G, w) is equal to the fractional clique weight of (G, w) for arbitrary weight function w. We call such graphs star-superperfect. We prove that odd cycles and their complements are star-superperfect. We then prove a theorem about the circular chromatic number of lexicographic product of graphs which provides a tool of constructing new star-superperfect graphs from old ones. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
A greedy clique decomposition of a graph is obtained by removing maximal cliques from a graph one by one until the graph is empty. We have recently shown that any greedy clique decomposition of a graph of ordern has at mostn 2/4 cliques. A greedy max-clique decomposition is a particular kind cf greedy clique decomposition where maximum cliques are removed, instead of just maximal ones. In this paper, we show that any greedy max-clique decompositionC of a graph of ordern has, wheren(C) is the number of vertices inC.  相似文献   

19.
A sequential graph coloring algorithm and a strict distributed (broadcasting type) algorithm , and an analysis of their performance in scales of random graph spaces is presented. For a space of graphs with n vertices and a mean degree d(n), the number of colors produced is almost surely bounded by about d(n)/logd(n), which is almost surely not more than twice the chromatic number, and the distributed algorithm terminates in O(Max(d(n),logn)) steps.  相似文献   

20.
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, we give some upper bounds on linear chromatic number for plane graphs with respect to their girth, that improve some results of Raspaud and Wang (2009).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号