首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article describes the synthesis of a polypyridyl ligand, namely 2-(2, 5-dimethoxyphenyl)-1H-imidazo[4,5-f]1,10-phenanthroline (DMPIP) and its Ru(II) complexes, namely [Ru(bipy)2DMPIP]2+ (1), [Ru(dmb)2DMPIP]2+ (2) and [Ru(phen)2DMPIP]2+ (3) ((bipy = 2,2′-bipyridine, dmb = 4,4′-dimethyl-2,2′-bipyridine, phen = 1,10-phenanthroline). The complexes were characterized by elemental analysis, plus IR, 1H-NMR and 13C [1H]-NMR spectra. The interactions of the complexes with calf thymus DNA were investigated. The results indicate that the three complexes can intercalate into DNA. Under irradiation at 365 nm, all three complexes promote the photocleavage of plasmid pBR 322 DNA. Inhibitor studies suggest that singlet oxygen plays a significant role in the cleavage mechanism for the complexes.  相似文献   

2.
A novel ligand dipyrido[1,2,5]oxadiazolo[3,4-b]quinoxaline (dpoq) and its complexes [Ru(bpy)2(dpoq)]2+ and [Ru(phen)2(dpoq)]2+ (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline) have been synthesized and characterized by elemental analysis, electrospray mass spectra and 1H NMR. The interaction of Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption spectroscopy, fluorescence spectroscopy, thermal denaturation and viscosity measurements. Results suggest that two Ru(II) complexes bind to DNA via an intercalative mode.  相似文献   

3.
The binding of the ruthenium(II) complexes [Ru(bpy)2(ITAP)](ClO4)2 (bpy = 2,2’-bipyridine) and [Ru(phen)2(ITAP)](ClO4)2 (phen = 1,10-phenanthroline, ITAP = isatino[1,2-b]-1,4,8,9-tetraazatriphenylene) to calf thymus DNA (CT-DNA) have been investigated with UV–visible and emission spectroscopy, viscosity measurements, thermal denaturation, and photoactivated cleavage. The experimental results indicate that the two complexes bind to CT-DNA through an intercalative mode. The two Ru(II) complexes in the presence of plasmid pBR322 DNA have been found to give rise to nicking of DNA upon irradiation.  相似文献   

4.
Based on the ligand dppz (dppz = dipyrido-[3,2-a:2′,3′-c]phenazine), a new ligand pbtp (pbtp = 4,5,9,11,14-pentaaza-benzo[b]triphenylene) and its polypyridyl ruthenium(II) complexes [Ru(phen)2(pbtp)]2+ (1) (phen = 1,10-phenanthroline and [Ru(bpy)2(pbtp)]2+ (2) (bpy = 2,2′-bipyridine) have been synthesized and characterized by elemental analysis, ES-MS and 1H NMR spectroscopy. The DNA-binding of these complexes were investigated by spectroscopic methods and viscosity measurements. The experimental results indicate that both complexes 1 and 2 bind to CT-DNA in classical intercalation mode, and can enantioselectively interact with CT-DNA. It is interesting to note that the pbtp ruthenium(II) complexes, in contrast to the analogous dppz complexes, do not show fluorescent behavior when intercalated into DNA. When irradiated at 365 nm, both complexes promote the photocleavage of pBR 322 DNA.  相似文献   

5.
New ligand 2-(4′-biphenyl)imidazo[4,5-f][1,10]phenanthroline (BPIP) and its complexes [Ru(bpy)2(BPIP)]2+ (1) (bpy = 2,2′-bipyridine) and [Ru(phen)2(BPIP)]2+ (2) (phen = 1,10-phenanthroline) have been synthesized and characterized by mass spectroscopy, 1H NMR and cyclic voltammetry. The interaction of two Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by spectroscopic and viscosity measurements. Results indicate that both complexes bind to DNA via an intercalative mode and the DNA-binding affinity of complex 2 is much greater than that of complex 1. Furthermore, when irradiated at 365 nm, both complexes have also been found to promote the photocleavage of plasmid pBR 322 DNA.  相似文献   

6.
Two polypyridyl ligands 6-fluro-3-(1H-imidazo [4,5-f] [1,10]-phenanthroline-2-yl)-4H-chromen-4-one (FIPC), 6-chloro-3-(1H-imidazo [4,5-f] [1,10]-phenanthroline-2-yl)-4H-chromen-4-one (ClIPC) polypyridyl ligands and their Ru(II) complexes [Ru(bipy)2FIPC]2+(1), [Ru(dmb)2FIPC]2+(2), [Ru(phen)2FIPC]2+(3), [Ru(bipy)2ClIPC]2+(4), [Ru(dmb)2ClIPC]2+(5) and [Ru(phen)2ClIPC]2+(6) ((bipy = 2,2′-bipyridine, dmb = 4,4′-dimethyl-2,2′-bipyridine and phen = 1,10-phenanthroline) have been synthesised and characterised by elemental analysis, Mass spectra, IR, 1H and 13C-NMR. The DNA-binding of the six complexes to calf-thymus DNA (CT-DNA) has been investigated by different spectrophotometric, fluorescence and viscosity measurements. The results suggest that 1–6 complexes bind to CT-DNA through intercalation. The variation in binding affinities of these complexes is rationalised by a consideration of electrostatic, steric factors and nature of ancillary ligands. Under irradiation at 365 nm, the three complexes have also been found to promote the photocleavage of plasmid pBR 322 DNA. Inhibitor studies suggest that singlet oxygen (1O2) plays a significant role in the cleavage mechanism of Ru(II) complexes. Thereby, under comparable experimental conditions [Ru(phen)2FIPC]2+(3), [Ru(phen)2ClIPC]2+(6) cleaves DNA more effectively than 1, 2, 4 and 5 complexes do. The Ru(II) polypyridyl complexes (1–6) have been screened for antimicrobial activities.  相似文献   

7.
The new ligand 2′-(3″,4″-methylene-dioxyphenyl)imidazo[4′,5′-f] [1,10]phenanthroline (mip) and its Ru(II) complexes [Ru(2,9-dmp)2(mip)]2+ (1) (2,9-dmp = 2,9-dimethyl-1,10-phenanthrolline) and [Ru(4,7-dmp)2(mip)]2+ (2) (4,7-dmp = 4,7-dimethyl-1,10-phenanthrolline) were synthesized and characterized. The binding properties of the two complexes to calf-thymus DNA (CT-DNA) were investigated by different spectrophotometric methods and viscosity measurements. Both 1 and 2 bind to CT-DNA in an intercalative mode, but with different binding strengths. Complex 2 can emit luminescence in the Tris buffer at ambient temperature, however, complex 1 showed no fluorescence emission, neither alone nor in the presence of CT-DNA. The circular-dichroism signal of the dialysate of the racemic complex against CT-DNA suggests that complexes 1 and 2 interact enantioselectively with CT-DNA. Furthermore, complexes 1 and 2 have been found to be an efficient photosensitiser for cracking DNA plasmid. Theoretical calculations for 1 and 2 were also carried out applying the density functional theory (DFT) method and applied to explain some obtained experimental observations.  相似文献   

8.
Three novel unsymmetric tridentate ligands, namely, ptmi (ptmi = 3-(1,10-phenanthroline-2-yl)-as-triazino[5,6-f]-5-methoxyisatin), pti (pti = 3-(1,10-phenanthroline-2-yl)-as-triazino-[5,6-f]isatin), ptni (ptni = 3-(1,10-phenanthroline-2-yl)-as-triazino[5,6-f]-5-nitroisatin), and their complexes [Ru(tpy)(ptmi)](ClO4)2 (tpy = 2,2′:6′,2″-terpyridine) (1), [Ru(tpy)(pti)](ClO4)2 (2), and [Ru(tpy)(ptni)](ClO4)2 (3) were prepared and characterized by elemental analysis, 1H NMR, ES–MS. The electrochemical behaviors were studied by cyclic voltammetry. The DNA-binding properties of these complexes were investigated by the spectroscopic method, viscosity measurements, and thermal denaturation. Theoretical studies on these complexes were also performed with the density functional theory (DFT) method. The experimental results showed that these complexes bind to calf thymus (CT-DNA) in an intercalative mode. The order of DNA-binding affinities (A) of these complexes is A(1) < A(2) < A(3). The trend in the DNA-binding affinities of this series of complexes can be reasonably explained by the DFT calculations.  相似文献   

9.
This article presents recent progress in our laboratory on the interactions of Ru(II) polypyridyl complexes with calf thymus DNA (CT-DNA). Mixed polypyridyl Ru(II) complexes [Ru(L)4(AIP)]2+ and [Ru(L)4PyIP]2+, where L is 4-amino pyridine and pyridine (AIP?=?2-(9-anthryl)-1H-imidazo[4,5-f][1,10]phenanthroline; PyIP?=?2-(1-pyrenyl)-1H-imidazo[4,5-f][1,10]phenanthroline), have been synthesized and characterized by elemental analysis, and physicochemical methods such as ESI-MS, UV-Vis, IR, and NMR spectroscopic techniques. Electronic absorption titrations, fluorescence spectroscopy, viscosity measurements, and salt-dependent studies of CT-DNA in the presence of incremental amounts of all four Ru(II) complexes clearly demonstrate that all four complexes bind to DNA by intercalation. The DNA-binding affinities of these complexes follow the order [Ru(4-APy)4(PyIP)]2+?>?[Ru(Py)4PyIP]2+?>?[Ru(4-APy)4(AIP)]2+?>?[Ru(Py)4AIP]2+. Irradiation of pBR 322 DNA with these complexes results in nicking of the plasmid DNA. All four complexes were screened for antimicrobial activity. All complexes also exhibited DNA “light switch” properties. These results suggest that both ancillary ligand and intercalative ligand influence the binding of these complexes to DNA.  相似文献   

10.
DNA-binding properties of a number of ruthenium complexes with different polypyridine ligands are reported. The new polypyridine ligand BFIP (=2-benzo[b] furan-2-yl-1H-imidazo[4,5-f][1,10]phenanthroline) and its ruthenium complexes [Ru(bpy)2BFIP]2+ (bpy = 2,2′-bipyridine), [Ru(dmb)2BFIP]2+ (dmb = 4,4′-dimethyl-2,2′-bipyridine), and [Ru(phen)2BFIP]2+ (phen = 1,10-phenanthroline) have been synthesized and characterized by elemental analysis, mass spectra, IR, UV-Vis, 1H- and 13C-NMR, and cyclic voltammetry. The DNA binding of these complexes to calf-thymus DNA (CT-DNA) was investigated by spectrophotometric, fluorescence, and viscosity measurements. The results suggest that ruthenium(II) complexes bind to CT-DNA through intercalation. Photocleavage of pBR 322 DNA by these complexes was also studied, and [Ru(phen)2BFIP]2+ was found to be a much better photocleavage agent than the other two complexes.  相似文献   

11.
A ligand ipdp (ipdp?=?indeno[1′,2′?:?5,6]pyrazino[2,3-i]dipyrido[3,2-a?:?2′,3′-c]phenazine-8-one) and its ruthenium complexes, [Ru(L)2(ipdp)]2+ (L?=?bpy (2,2′-bipyridine), phen (1,10-phenanthroline)), have been synthesized and characterized by elemental analysis, electrospray mass spectra, and 1H NMR. The interaction between the complexes and calf thymus DNA (CT-DNA) has been investigated by spectroscopic methods and viscosity measurements. The results indicate that the complexes can bind to CT-DNA in an intercalative mode. In addition, both complexes promote the photocleavage of plasmid pBR322 DNA under irradiation. The mechanistic studies reveal that singlet oxygen 1O2 plays a significant role in DNA photocleavage.  相似文献   

12.
Modulation of the luminescence properties of a di-ruthenium(II) complex [(bpy)2Ru(BL)Ru(bpy)2]4+ (bpy = 2,2′-bipyridine, BL = 2-hydroxyl-5-methyl-1,3-bis([1,10]phenanthroline-[5,6-d]imidazol-2-yl)benzene) by DNA and/or Cu2+ ion has been investigated. It is found that the ruthenium(II) complex can coordinate to the Cu2+ ion in both the absence and presence of DNA. Binding to DNA is through electrostatic interactions and the intramolecular hydrogen bond in the complex is located outside of the DNA. The binding constant is 1.6 × 104 M−1. Moreover, it is demonstrated that DNA has the ability to enhance the luminescence intensities of both the di-ruthenium(II) complex and the tri-metallic system generated by chelating with Cu2+. Conversely, Cu2+ ion can quench the luminescence of both the free ruthenium(II) complex and the DNA-bound ruthenium(II) complex.  相似文献   

13.
The hetero-tris-chelates of the formula [Ru(Phen)(RAaiR′)2](ClO4)2 (Phen = 1,10-phenanthroline, RAaiR′ = 1-alkyl-2-(arylazo)imidazole, p-R-C6H4-N=N-C3H2-NN-1-R′, where R = H (a), Me (b), Cl (c) and R′ = Me (II), Et (III), CH2Ph (IV)) have been isolated from the reaction of ctc-[RuCl2(RAaiR′)2] with AgNO3 + Phen or [Ag(Phen)2](ClO4) in acetone at 40°C in dark followed by the addition of NaClO4 (aq). The stereo-chemistry of the complexes have been supported by 1H NMR data. Considering the arylazoimidazole and phenanthroline moietie there are twenty different carbon atoms in the molecule which gives a total of twenty different peaks in the 13C NMR spectrum of complex Ia. Cyclic voltammograms show Ru(III)/Ru(II) couple at 1.3–1.4 V vs SCE along with three successive ligand reductions. The article is published in the original.  相似文献   

14.
Two new ruthenium(Ⅱ) complexes, [Ru(btz)3](ClO4)2 (1) and [Ru(btz)(dppz)2](ClO4)2 (2) (btz = 4,4′-bithi-azole, dppz = dipyrido[3,2-a:2′,3′-c]phenazine), have been synthesized and characterized by elemental analysis, 1H NMR, ES-MS and X-ray crystallography. The DNA binding behaviors of two complexes have been studied by spectroscopic and viscosity measurements. The results suggest that complex 1 binds to CT-DNA via an electrostatic mode, while complex 2 via an intercalative mode. Under irradiation at 365 nm,...  相似文献   

15.
Two new Ruthenium (II) polypyridyl complexes [Ru(dmp)2(ipbp)](ClO4)2 (1) (dmp = 2,9-dimethyl-1,10-phenanthroline, ipbp = 3-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-4H-1-banzopyran-2-one) and [Ru(dmb)2(ipbp)](ClO4)2 (2) (dmb = 4,4′-dimethyl-2,2′-bipyridine) have been synthesized and characterized by elemental analysis, FAB-MS, ES-MS and 1H NMR and cyclic voltammetric methods. The DNA-binding behaviors of these complexes were investigated by spectroscopic titration, viscosity measurements, and thermal denaturation. Absorption titration and thermal denaturation studies reveal that these complexes are moderately strong binders of calf thymus DNA (CT-DNA). Viscosity measurements show that the complexes 1 and 2 interact with CT-DNA by intercalative mode. The DNA-binding affinity of the complex 2 is larger than that of complex 1.  相似文献   

16.
蒲小华  陈绘丽  韩高义  杨频 《化学学报》2007,65(15):1464-1468
合成了两个钌多吡啶配合物[Ru(bpy)2DMNP](C1O4)2 (Ru1)和[Ru(bpy)2BOPIP](C1O4)2 (Ru2), 应用元素分析、核磁共振对配合物结构进行了表征, 通过电子吸收光谱、荧光光谱、粘度实验以及凝胶电泳技术对配合物与DNA相互作用的性质进行了研究. 结果表明, 配合物与DNA分子之间以插入模式结合. 在紫外光照下, 两种配合物均能使质粒pBR322DNA断裂, 机理研究表明, 其光断裂DNA的活性氧化物种为单线态氧.  相似文献   

17.
A classical ruthenium(II) complex [Ru(bpy)2(dppz)]2+ (bpy = 2,2′-bipyridine, dppz = dipyrido[3,2-a:2′,3′-c]phenazine) was combined with guanine and single-walled carbon nanotubes dispersed with DNA (SWCNTs-DNA) to prepare electrochemically tunable photoluminescence materials. These multi-component aggregates were found to show enhanced luminescence by the electrocatalytic oxidation of guanine under the excitation of a continuous wave green laser at a constant anodic potential via an electrode-solution interface. The results from this study provide a significant foundation for better understanding of DNA-based luminescent devices.  相似文献   

18.
Polypyridyl ligand 9a,13a‐dihydro‐4,5,9,14‐tetraaza‐benzo[b]triphenylene‐11‐yl)‐phenyl‐methanone (BDPPZ) and its complexes [Ru(bpy)2BDPPZ]2+, [Ru(dmb)2BDPPZ]2+ and [Ru(phen)2BDPPZ]2+ (where bpy = 2,2′‐bipyridine, dmb = 4,4′‐dimethyl‐2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized and characterized by elemental analysis, IR, UV–vis, 1H‐NMR, 13C‐NMR and mass spectra. The DNA‐binding properties of the complexes were investigated by absorption, emission, melting temperature and viscosity measurements. Experimental results indicate that the three complexes can intercalate into DNA base pairs. Photo activated cleavage of pBR‐322 DNA by the three complexes was also studied. Further, all three Ru(II) complexes synthesized were screened for their antimicrobial activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A series of ruthenium(II) complexes with electron-donor or electron-acceptor groups in intercalative ligands, [Ru(phen)2(o-MOP)]2+ (1), [Ru(phen)2(o-MP)]2+ (2), [Ru(phen)2(o-CP)]2+ (3) and [Ru(phen)2(o-NP)]2+ (4), have been synthesized and characterized by elementary analysis, ES-MS, 1H NMR, electronic absorption and emission spectra. The binding properties of these complexes to CT-DNA have been investigated by spectroscopy and viscosity experiments. The results showed that these complexes bind to DNA in intercalation mode and their intrinsic binding constants (Kb) are 1.1, 0.35, 0.53 and 1.7 × 105 M−1, respectively. The subtle but detectable differences occurred in the DNA-binding properties of these complexes are mainly ascribed to the electron-withdrawing abilities of substituents (–OCH3 < –CH3 < –Cl < –NO2) on the intercalative ligands as well as the intramolecular H-bond (for substituent –OCH3) which increase the planarity area of the intercalative ligand to some extent. The density functional theory (DFT) calculations were also performed and used to further discuss the trend in the DNA-binding affinities of these complexes.  相似文献   

20.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号