首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Absolute band intensities of acetone ((CH3)2CO) in the nu19/nu23 and nu7 band systems near 530 and 777 cm(-1), respectively, were measured at temperatures of 232, 262 and 295 K, using a Fourier transform infrared (FTIR) spectrometer. No evident temperature dependence for the band intensities was observed. The dipole moments and the fundamental band intensities were derived in the harmonic oscillator approximation. The results are useful for the spectroscopic retrieval of acetone concentrations in the upper atmosphere.  相似文献   

2.
3.
Analytical derivative techniques are used to obtain the dipole moment derivatives and harmonic frequencies of C2H2 and C2H4 using SCF wavefunctions and large basis sets. The infrared intensities within the harmonic approximation are obtained. The multipole moments and polarizabilities are also calculated.  相似文献   

4.
The IR spectra of complexes of water with nitrogen molecules in the range of the symmetric (nu(1)) and antisymmetric (nu(3)) bands of H(2)O have been studied in helium droplets. The infrared intensities of the nu(3) and nu(1) modes of H(2)O were found to be larger by factors of 1.3 and 2, respectively, in the N(2)-H(2)O complexes. These factors are smaller than those obtained in recent theoretical calculations. The conformation of the N(2)-H(2)O complex was estimated. Spectra and IR intensities of the (N(2))(2)-H(2)O and N(2)-(H(2)O)(2) complexes were also obtained and their structures are discussed.  相似文献   

5.
Absolute line intensities in the nu(6) and nu(8) interacting bands of trans-HCOOH, observed near 1105.4 and 1033.5 cm(-1), respectively, and the dissociation constant of the formic acid dimer (HCOOH)(2) have been measured using Fourier transform spectroscopy at a resolution of 0.002 cm(-1). Eleven spectra of formic acid, at 296.0(5) K and pressures ranging from 14.28(25) to 314.0(24) Pa, have been recorded between 600 and 1900 cm(-1) with an absorption path length of 19.7(2) cm. 437 integrated absorption coefficients have been measured for 72 lines in the nu(6) band. Analysis of the pressure dependence yielded the dissociation constant of the formic acid dimer, K(p)=361(45) Pa, and the absolute intensity of the 72 lines of HCOOH. The accuracy of these results was carefully estimated. The absolute intensities of four lines of the weak nu(8) band were also measured. Using an appropriate theory, the integrated intensity of the nu(6) and nu(8) bands was determined to be 3.47 x 10(-17) and 4.68 x 10(-19) cm(-1)(molecule cm(-2)) respectively, at 296 K. Both the dissociation constant and integrated intensities were compared to earlier measurements.  相似文献   

6.
The reactions of the indenyl radicals with acetylene (C2H2) and vinylacetylene (C4H4) is studied in a hot chemical reactor coupled to synchrotron based vacuum ultraviolet ionization mass spectrometry. These experimental results are combined with theory to reveal that the resonantly stabilized and thermodynamically most stable 1-indenyl radical (C9H7.) is always formed in the pyrolysis of 1-, 2-, 6-, and 7-bromoindenes at 1500 K. The 1-indenyl radical reacts with acetylene yielding 1-ethynylindene plus atomic hydrogen, rather than adding a second acetylene molecule and leading to ring closure and formation of fluorene as observed in other reaction mechanisms such as the hydrogen abstraction acetylene addition or hydrogen abstraction vinylacetylene addition pathways. While this reaction mechanism is analogous to the bimolecular reaction between the phenyl radical (C6H5.) and acetylene forming phenylacetylene (C6H5CCH), the 1-indenyl+acetylene→1-ethynylindene+hydrogen reaction is highly endoergic (114 kJ mol−1) and slow, contrary to the exoergic (−38 kJ mol−1) and faster phenyl+acetylene→phenylacetylene+hydrogen reaction. In a similar manner, no ring closure leading to fluorene formation was observed in the reaction of 1-indenyl radical with vinylacetylene. These experimental results are explained through rate constant calculations based on theoretically derived potential energy surfaces.  相似文献   

7.
We report quantitative infrared spectra of vapor-phase hydrogen peroxide (H2O2) with all spectra pressure-broadened to atmospheric pressure. The data were generated by injecting a concentrated solution (83%) of H2O2 into a gently heated disseminator and diluting it with pure N2 carrier gas. The water vapor lines were quantitatively subtracted from the resulting spectra to yield the spectrum of pure H2O2. The results for the ν6 band strength (including hot bands) compare favorably with the results of Klee et al. (J Mol. Spectrosc. 195:154, 1999) as well as with the HITRAN values. The present results are 433 and 467 cm-2 atm−1 (±8 and ±3% as measured at 298 and 323 K, respectively, and reduced to 296 K) for the band strength, matching well the value reported by Klee et al. (S = 467 cm−2 atm−1 at 296 K) for the integrated band. The ν1 + ν5 near-infrared band between 6,900 and 7,200 cm−1 has an integrated intensity S = 26.3 cm−2 atm−1, larger than previously reported values. Other infrared and near-infrared bands and their potential for atmospheric monitoring are discussed.  相似文献   

8.
Black powders of the magnetically layered semiconductors Ca2MnO4 and Ca3Mn2O7 prepared by a carbonate-precursor technique have been investigated by photoacoustic spectroscopy (PAS) over the energy range 1.25–4 eV. The band-gap energies of these two compounds have been evaluated to be 1.6 and 1.4 (± 0.1) eV, respectively. It is concluded that PAS is a most useful method for determining the variation of the band gap with composition in large band-gap polycrystalline semiconductors.  相似文献   

9.
A new copper(H) complex [Cu2(DMF)(H2O)(C7H4NO4)2(C7H3NO4)]2-3.5DMF has been synthesized and its structure was determined by single-crystal X-ray diffraction. The crystal is of triclinic, space group P1^- with a = 10.722(3), b = 18.170(4), c = 20.923(7)A,α = 105.297(9), β = 101.701(10), γ = 105.74(1)°, V= 3615(1)A^3, Z = 2, C58.50H64.50Cu4N1l.50O3150, Mr = 1686.90, Dc = 1.550 g/cm^3,μ= 1.255 mm^-1, F(000) = 1728.00, T = 150(2) K, the final R = 0.0640 and wR = 0.173 for 11310 observed reflections with I 〉 2σ(I). In the crystal, each formular unit consists of two dinuclear copper(H) compounds, between which the O-H…O hydrogen bonds exist. Each Cu^Ⅱ cation is six-coordinated in an octahedral geometry. The intermolecular hydrogenbonding interaction leads to a 3-D framework of the title compound.  相似文献   

10.
11.
The binuclear praseodymium(III) complex with N‐(1‐carboxyethylidene)‐salicylhydrazide (C10H10N2O4, H2L) was prepared in H2O‐C2H5OH mixed solution, and the crystal structure of [Pr2L2(HL)2(H2O)4]·3H2O·C6H6 was determined by X‐ray single crystal diffraction. The crystal complex crystallizes in the triclinic system with space group P‐1, and in the structure each Pr atom is 9‐coordinated by carboxyl O and acyl O and azomethine N atoms of two tridentate ligands to form two stable five‐membered rings sharing one side in keto‐mode and two water molecules. The coordination polyhedron around Pr3+ was described as a monocapped square antiprism geometry. In an individual molecule, four tridentate ligands were coordinated by two negative univalent (HL) and two bivalent forms (L) respectively. Two negative univalent ligands were coordinated via μ2‐bridging mode.  相似文献   

12.
13.
Rubidium chromium(III) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­chromium(III)­rubidium(I)], [RbCr(C2O4)2(H2O)2], (I), and dicaesium magnesium dioxalate tetrahydrate [tetra­aqua­bis(μ‐oxalato)­magnesium(II)­dicaesium(I)], [Cs2Mg(C2­O4)2(H2O)4], (II), have layered structures which are new among double‐metal oxalates. In (I), the Rb and Cr atoms lie on sites with imposed 2/m symmetry and the unique water molecule lies on a mirror plane; in (II), the Mg atom lies on a twofold axis. The two non‐equivalent Cr and Mg atoms both show octahedral coordination, with a mean Cr—O distance of 1.966 Å and a mean Mg—O distance of 2.066 Å. Dirubid­ium copper(II) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­copper(II)­dirubidium(I)], [Rb2Cu(C2O4)2(H2O)2], (III), is also layered and is isotypic with the previously described K2‐ and (NH4)2CuII(C2O4)2·2H2O compounds. The two non‐equivalent Cu atoms lie on inversion centres and are both (4+2)‐coordinated. Hydro­gen bonds are medium‐strong to weak in the three compounds. The oxalate groups are slightly non‐planar only in the Cs–Mg compound, (II), and are more distinctly non‐planar in the K–Cu compound, (III).  相似文献   

14.
The initial rates of formation of the major products in the thermal reactions of ethylene at temperatures in the neighborhood of 800 K have been measured in the presence and absence of the additives neopentane and ethane. It has been shown that in the absence of the additive the main initiation process is (1) while in the presence of neopentane and ethane the following additional initiation processes occur: (2) From the ratios of the rates of formation of the major products in the presence and absence of the additive the ratios kN/k1 and kE/k1 were measured over the temperature range of 750–820 K. Taking values from the literature for kN and kE, the following value was obtained for k1: Previous results using butene-1 as additive were rexamined and shown to be consistent with this measurement. From this measurement the following values were derived: ΔHf(C2H3) = 63.4 ± 2 kcal/mol and D(C2H3? H) = 103 kcal/mol.  相似文献   

15.
The Layered Structure of Cu2(H2O)4[C4H4N2][C6H2(COO)4]·2H2O Triclinic single crystals of Cu2(H2O)4[C4H4N2][C6H2(COO)4]·2H2O have been grown in an aqueous silica gel. Space group (Nr. 2), a = 723.94(7) pm, b = 813.38(14) pm, c = 931.0(2) pm, α = 74.24(2)°, β = 79.24(2)°, γ = 65.451(10)°, V = 0.47819(14) nm3, Z = 1. Cu2+ is coordinated in a distorted, octahedral manner by two water molecules, three oxygen atoms of the pyromellitate anions and one nitrogen atom of pyrazine (Cu—O 194.1(2)–229.3(3) pm; Cu–N 202.0(2) pm). The connection of Cu2+ and [C6H2(COO)4)]4? yields infinite strands, which are linked by pyrazine molecules to form a two‐dimensional coordination polymer. Thermogravimetric analysis in air showed that the dehydrated compound was stable between 175 and 248 °C. Further heating yielded CuO.  相似文献   

16.
Raman spectra of propylamine (C3H7NH2) and its binary mixtures, C3H7NH2 + CH3OH with varying mole fractions of the reference system, C3H7NH2, C were recorded in two widely apart wavenumber regions, 3100-3600 cm(-1) and 1225-1325 cm(-1). In the former region, the two Raman bands at approximately 3305 and approximately 3326 cm(-1), obtained after the line shape analysis, which were assigned to symmetric nu(N-H) and anti-symmetric nu(N-H) stretching modes, respectively, show a downshift upon dilution. However, whereas the nu(N-H) anti-symmetric mode shows a shift of 18.6 cm(-1), the nu(N-H) symmetric mode shows a much smaller shift (5.7 cm(-1)) between neat liquid and high dilution, C = 0.1. This aspect has been explained using the optimized geometries calculated employing ab initio theory (MP2 level) for the neat C3H7NH2 and its different hydrogen-bonded complexes. The linewidth versus concentration plot for the nu(N-H) anti-symmetric stretching mode, however exhibits a distinct maxima at C = 0.4, which has been explained as a slight departure from the concentration fluctuation model. In the latter region, a symmetric peak is observed, which corresponds to nu(C-N) stretching mode, which shows an upshift upon dilution and an almost linear concentration dependence. This has also been explained in terms of the parameters obtained from the optimized geometries of the different hydrogen-bonded complexes.  相似文献   

17.
The absolute infrared intensities of the ν2, ν3 and ν6 bands of formic acid have been evaluated in a 480 L White cell system using FTIR and ion chromatography techniques. The values obtained are, respectively; (4.2 ± 0.2) × 10−17 cm molec−1 for the ν6 band, (4.8 ± 0.2) × 10−17 cm molec−1 for the ν3 band and (0.57 ± 0.04) × 10−17 cm molec−1 for the ν2 band. The air broadening coefficient of transitions in the ν6 band, has been measured using a tunable diode laser spectrometer, equal to (0.101 ± 0.005) cm−1 atm−1 (half width at half maximum). A computer search has been performed to find absorption lines of formic acid suitable for second derivative tunable diode laser measurement of this gas in ambient air.  相似文献   

18.
19.
The single crystals of (C2H7N4O)2[UO2(C2O4)2(H2O)] were studied by X-ray diffraction. The crystals are monoclinic, space group Pn, Z = 2, unit cell parameters: a = 9.4123(2) Å, b = 8.4591(2) Å, c = 11.8740(3) Å, β = 105.500(10)°, V = 911.02(4) Å3. The main structural units of the crystals of I are islet complex groups [UO2(C2O4)2(H2O)]2? corresponding to the crystal chemical group AB 2 01 M1 (A = UO UO 2 2+ , B01 = C2O 4 2? , M = H2O) of uranyl complexes. Uranium-containing mononuclear complexes are connected into a three-dimensional framework through the electrostatic interactions and hydrogen bonding system involving carbamyolguanidinium ions.  相似文献   

20.
We have functions expressed as antisymmetrized products of strongly orthogonal geminals have been evaluated for some three membered ring molecules. GF results are compared with previously computed SCF-MO results, obtained employing the same atomic basis. Transferability features of bonds and inner shells are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号