首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the effect of thermal fluctuations on the thermodynamics of a Lovelock-AdS black hole. Taking the first order logarithmic correction term in entropy we analyze the thermodynamic potentials like Helmholtz free energy, enthalpy and Gibbs free energy. We find that all the thermodynamic potentials are decreasing functions of correction coefficient \(\alpha \). We also examined this correction coefficient must be positive by analysing \(P{-}V\) diagram. Further we study the \(P{-}V\) criticality and stability and find that presence of logarithmic correction in it is necessary to have critical points and stable phases. When \(P{-}V\) criticality appears, we calculate the critical volume \(V_c\), critical pressure \(P_c\) and critical temperature \(T_c\) using different equations and show that there is no critical point for this black hole without thermal fluctuations. We also study the geometrothermodynamics of this kind of black holes. The Ricci scalar of the Ruppeiner metric is graphically analysed.  相似文献   

2.
In this paper, we examine the possible realization of a new inflation family called “shaft inflation” by assuming the modified Chaplygin gas model and a tachyon scalar field. We also consider the special form of the dissipative coefficient \(\Gamma ={a_0}\frac{T^{3}}{\phi ^{2 }}\) and calculate the various inflationary parameters in the scenario of strong and weak dissipative regimes. In order to examine the behavior of inflationary parameters, the \(n_s \)\( \phi ,\, n_s \)r, and \(n_s \)\( \alpha _s\) planes (where \(n_s,\, \alpha _s,\, r\), and \(\phi \) represent the spectral index, its running, tensor-to-scalar ratio, and scalar field, respectively) are being developed, which lead to the constraints \(r< 0.11\), \(n_s=0.96 \pm 0.025\), and \(\alpha _s =-0.019 \pm 0.025\). It is quite interesting that these results of the inflationary parameters are compatible with BICEP2, WMAP \((7+9)\) and recent Planck data.  相似文献   

3.
O. Azzolini  M. T. Barrera  J. W. Beeman  F. Bellini  M. Beretta  M. Biassoni  E. Bossio  C. Brofferio  C. Bucci  L. Canonica  S. Capelli  L. Cardani  P. Carniti  N. Casali  L. Cassina  M. Clemenza  O. Cremonesi  A. Cruciani  A. D’Addabbo  I. Dafinei  S. Di Domizio  F. Ferroni  L. Gironi  A. Giuliani  P. Gorla  C. Gotti  G. Keppel  M. Martinez  S. Morganti  S. Nagorny  M. Nastasi  S. Nisi  C. Nones  D. Orlandi  L. Pagnanini  M. Pallavicini  V. Palmieri  L. Pattavina  M. Pavan  G. Pessina  V. Pettinacci  S. Pirro  S. Pozzi  E. Previtali  A. Puiu  C. Rusconi  K. Schäffner  C. Tomei  M. Vignati  A. Zolotarova 《The European Physical Journal C - Particles and Fields》2018,78(11):888
The CUPID-0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95\(\%\) enriched in \(^{82}\)Se and two natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of \(^{82}\)Se into the 0\(_1^+\), 2\(_1^+\) and 2\(_2^+\) excited states of \(^{82}\)Kr with an exposure of 5.74 kg\(\cdot \)yr (2.24\(\times \)10\(^{25}\) emitters\(\cdot \)yr). We found no evidence of the decays and set the most stringent limits on the widths of these processes: \(\varGamma \)(\(^{82}\)Se \(\rightarrow ^{82}\)Kr\(_{0_1^+}\))8.55\(\times \)10\(^{-24}\) yr\(^{-1}\), \(\varGamma \) (\(^{82}\) Se \(\rightarrow ^{82}\) Kr \(_{2_1^+}\))\(\,{<}\,6.25 \,{\times }\,10^{-24}\) yr\(^{-1}\), \(\varGamma \)(\(^{82}\)Se \(\rightarrow ^{82}\)Kr\(_{2_2^+}\))8.25\(\times \)10\(^{-24}\) yr\(^{-1}\) (90\(\%\) credible interval).  相似文献   

4.
In \((2+1)\)-dimensional AdS spacetime, we obtain new exact black hole solutions, including two different models (power parameter \(k=1\) and \(k\ne 1\)), in the Einstein–Power–Maxwell (EPM) theory with nonminimally coupled scalar field. For the charged hairy black hole with \(k\ne 1\), we find that the solution contains a curvature singularity at the origin and is nonconformally flat. The horizon structures are identified, which indicates the physically acceptable lower bound of mass in according to the existence of black hole solutions. Later, the null geodesic equations for photon around this charged hairy black hole are also discussed in detail.  相似文献   

5.
We describe a likelihood analysis using MasterCode of variants of the MSSM in which the soft supersymmetry-breaking parameters are assumed to have universal values at some scale \(M_\mathrm{in}\) below the supersymmetric grand unification scale \(M_\mathrm{GUT}\), as can occur in mirage mediation and other models. In addition to \(M_\mathrm{in}\), such ‘sub-GUT’ models have the 4 parameters of the CMSSM, namely a common gaugino mass \(m_{1/2}\), a common soft supersymmetry-breaking scalar mass \(m_0\), a common trilinear mixing parameter A and the ratio of MSSM Higgs vevs \(\tan \beta \), assuming that the Higgs mixing parameter \(\mu > 0\). We take into account constraints on strongly- and electroweakly-interacting sparticles from \(\sim 36\)/fb of LHC data at 13 TeV and the LUX and 2017 PICO, XENON1T and PandaX-II searches for dark matter scattering, in addition to the previous LHC and dark matter constraints as well as full sets of flavour and electroweak constraints. We find a preference for \(M_\mathrm{in}\sim 10^5\) to \(10^9 \,\, \mathrm {GeV}\), with \(M_\mathrm{in}\sim M_\mathrm{GUT}\) disfavoured by \(\Delta \chi ^2 \sim 3\) due to the \(\mathrm{BR}(B_{s, d} \rightarrow \mu ^+\mu ^-)\) constraint. The lower limits on strongly-interacting sparticles are largely determined by LHC searches, and similar to those in the CMSSM. We find a preference for the LSP to be a Bino or Higgsino with \(m_{\tilde{\chi }^0_{1}} \sim 1 \,\, \mathrm {TeV}\), with annihilation via heavy Higgs bosons H / A and stop coannihilation, or chargino coannihilation, bringing the cold dark matter density into the cosmological range. We find that spin-independent dark matter scattering is likely to be within reach of the planned LUX-Zeplin and XENONnT experiments. We probe the impact of the \((g-2)_\mu \) constraint, finding similar results whether or not it is included.  相似文献   

6.
The novel offset core photonic crystal fiber filter is designed and analyzed, whose dispersion relations and polarization characteristics are simulated by finite element method using COMSOL Multiphysics software. The filter structure is optimized by changing diameter of air holes and the thickness of Au layer. Simulation results show that loss of y-polarized mode reaches 657 dB/cm while the loss of x-polarized mode is very low at the communication window (\(1.55\,\upmu \hbox {m}\)). The crosstalk of filter reaches 56.2 dB at \(1.55\,\upmu \hbox {m}\) wavelength and the 20 dB band width of the filter is 100 nm when the propagation distance is \(1\,\upmu \hbox {m}\). Not only the filter shows good performance but also the proposed photonic crystal fiber can be applied to other fields.  相似文献   

7.
We study the constraints of the generic two-Higgs-doublet model (2HDM) type-III and the impacts of the new Yukawa couplings. For comparisons, we revisit the analysis in the 2HDM type-II. To understand the influence of all involving free parameters and to realize their correlations, we employ a \(\chi \)-square fitting approach by including theoretical and experimental constraints, such as the S, T, and U oblique parameters, the production of standard model Higgs and its decay to \(\gamma \gamma \), \(WW^*/ZZ^*\), \(\tau ^+\tau ^-\), etc. The errors of the analysis are taken at 68, 95.5, and \(99.7~\%\) confidence levels. Due to the new Yukawa couplings being associated with \(\cos (\beta -\alpha )\) and \(\sin (\beta -\alpha )\), we find that the allowed regions for \(\sin \alpha \) and \(\tan \beta \) in the type-III model can be broader when the dictated parameter \(\chi _F\) is positive; however, for negative \(\chi _F\), the limits are stricter than those in the type-II model. By using the constrained parameters, we find that the deviation from the SM in \(h\rightarrow Z\gamma \) can be of \(\mathcal{O}(10~\%)\). Additionally, we also study the top-quark flavor-changing processes induced at the tree level in the type-III model and find that when all current experimental data are considered, we get \(Br(t\rightarrow c(h, H) )< 10^{-3}\) for \(m_h=125.36\) and \(m_H=150\) GeV, and \(Br(t\rightarrow cA)\) slightly exceeds \(10^{-3}\) for \(m_A =130\) GeV.  相似文献   

8.
In the aligned two-Higgs-doublet model, we perform a complete one-loop computation of the short-distance Wilson coefficients \(C_{7,9,10}^{(\prime )}\), which are the most relevant ones for \(b\rightarrow s\ell ^+\ell ^-\) transitions. It is found that, when the model parameter \(\left| \varsigma _{u}\right| \) is much smaller than \(\left| \varsigma _{d}\right| \), the charged scalar contributes mainly to chirality-flipped \(C_{9,10}^\prime \), with the corresponding effects being proportional to \(\left| \varsigma _{d}\right| ^2\). Numerically, the charged-scalar effects fit into two categories: (A) \(C_{7,9,10}^\mathrm {H^\pm }\) are sizable, but \(C_{9,10}^{\prime \mathrm {H^\pm }}\simeq 0\), corresponding to the (large \(\left| \varsigma _{u}\right| \), small \(\left| \varsigma _{d}\right| \)) region; (B) \(C_7^\mathrm {H^\pm }\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\) are sizable, but \(C_{9,10}^\mathrm {H^\pm }\simeq 0\), corresponding to the (small \(\left| \varsigma _{u}\right| \), large \(\left| \varsigma _{d}\right| \)) region. Taking into account phenomenological constraints from the inclusive radiative decay \(B\rightarrow X_{s}{\gamma }\), as well as the latest model-independent global analysis of \(b\rightarrow s\ell ^+\ell ^-\) data, we obtain the much restricted parameter space of the model. We then study the impact of the allowed model parameters on the angular observables \(P_2\) and \(P_5'\) of \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\) decay, and we find that \(P_5'\) could be increased significantly to be consistent with the experimental data in case B.  相似文献   

9.
In a coalescence plus fragmentation approach we calculate the heavy baryon/meson ratio and the \(p_T\) spectra of charmed hadrons \(D^{0}\), \(D_{s}\) and \(\varLambda _{c}^{+}\) in a wide range of transverse momentum from low \(p_T\) up to about 10 GeV and discuss their ratios from RHIC to LHC energies without any change of the coalescence parameters. We have included the contribution from decays of heavy hadron resonances and also the one due to fragmentation of heavy quarks which do not undergo the coalescence process. The coalescence process is tuned to have all charm quarks hadronizing in the \(p_T\rightarrow 0\) limit and at finite \(p_T\) charm quarks not undergoing coalescence are hadronized by independent fragmentation. The \(p_T\) dependence of the baryon/meson ratios are found to be sensitive to the masses of coalescing quarks, in particular the \(\varLambda _{c}/D^{0}\) can reach values of about \(\mathrm 1\div 1.5 \) at \(p_T \approx \, 3\) GeV, or larger, similarly to the light baryon/meson ratio like \(p/\pi \) and \(\varLambda /K\), however a marked difference is a quite weak \(p_T\) dependence with respect to the light case, such that a larger value at intermediate \(p_T\) implies a relatively large value also for the integrated yields. A comparison with other coalescence model and with the prediction of thermal model is discussed.  相似文献   

10.
We study models that produce a Higgs boson plus photon (\(h^0\gamma \)) resonance at the LHC. When the resonance is a \(Z'\) boson, decays to \(h^0\gamma \) occur at one loop. If the \(Z'\) boson couples at tree level to quarks, then the \(h^0\gamma \) branching fraction is typically of order \(10^{-5}\) or smaller. Nevertheless, there are models that would allow the observation of \(Z'\rightarrow \,h^0\gamma \) at \(\sqrt{s}=13\) TeV with a cross section times branching fraction larger than 1 fb for a \(Z'\) mass in the 200–450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the \(Z'\) into lepton pairs competes with \(h^0\gamma \), even if the \(Z'\) couplings to leptons vanish at tree level. We also present a model in which a \(Z'\) boson decays into a Higgs boson and a pair of collimated photons, mimicking an \(h^0\gamma \) resonance. In this model, the \(h^0\gamma \) resonance search would be the discovery mode for a \(Z'\) as heavy as 2 TeV. When the resonance is a scalar, although decay to \(h^0\gamma \) is forbidden by angular momentum conservation, the \(h^0\) plus collimated photons channel is allowed. We comment on prospects of observing an \(h^0\gamma \) resonance through different Higgs decays, on constraints from related searches, and on models where \(h^0\) is replaced by a nonstandard Higgs boson.  相似文献   

11.
The K--induced production of \( \Lambda\)(1405) is investigated in K - d \( \rightarrow\) \( \pi\) \( \Sigma\) n reactions based on coupled-channels chiral dynamics, in order to discuss the resonance position of the \( \Lambda\)(1405) in the \( \bar{{K}}\) N channel. We find that the K - d \( \rightarrow\) \( \Lambda\)(1405)n process favors the production of \( \Lambda\)(1405) initiated by the \( \bar{{K}}\) N channel. The present approach indicates that the \( \Lambda\)(1405) -resonance position is 1420MeV rather than 1405MeV in the \( \pi\) \( \Sigma\) invariant-mass spectra of K - d \( \rightarrow\) \( \pi\) \( \Sigma\) n reactions. This is consistent with an observed spectrum of the K - d \( \rightarrow\) \( \pi^{{+}}_{}\) \( \Sigma^{{-}}_{}\) n with 686-844MeV/c incident K- by bubble chamber experiments done in the 70s. Our model also reproduces the measured \( \Lambda\)(1405) production cross-section.  相似文献   

12.
We study the phase transition of rainbow inspired higher dimensional Schwarzschild black hole incorporating the effects of the generalized uncertainty principle. First, we obtain the relation between the mass and Hawking temperature of the rainbow inspired black hole taking into account the effects of the modified dispersion relation and the generalized uncertainty principle. The heat capacity is then computed from this relation which reveals that there are remnants. The entropy of the black hole is next obtained in \(3+1\) and \(4+1\)-dimensions and is found to have logarithmic corrections only in \(3+1\)-dimensions. We further investigate the local temperature, free energy and stability of the black hole in an isothermal cavity. From the analysis of the free energy, we find that there are two Hawking–Page type phase transitions in \(3+1\) and \(4+1\)-dimensions if we take into account the generalized uncertainty principle. However, in the absence of the generalized uncertainty principle, only one Hawking–Page type phase transition exists in spacetime dimensions greater than four.  相似文献   

13.
We construct solutions of higher-dimensional Einstein gravity coupled to nonlinear \(\sigma \)-model with cosmological constant. The \(\sigma \)-model can be perceived as exterior configuration of a spontaneously-broken \(SO(D-1)\) global higher-codimensional “monopole”. Here we allow the kinetic term of the \(\sigma \)-model to be noncanonical; in particular we specifically study a quadratic-power-law type. This is some possible higher-dimensional generalization of the Bariola–Vilenkin (BV) solutions with k-global monopole studied recently. The solutions can be perceived as the exterior solution of a black hole swallowing up noncanonical global defects. Even in the absence of comological constant its surrounding spacetime is asymptotically non-flat; it suffers from deficit solid angle. We discuss the corresponding horizons. For \(\Lambda >0\) in 4d there can exist three extremal conditions (the cold, ultracold, and Nariai black holes), while in higher-than-four dimensions the extremal black hole is only Nariai. For \(\Lambda <0\) we only have black hole solutions with one horizon, save for the 4d case where there can exist two horizons. We give constraints on the mass and the symmetry-breaking scale for the existence of all the extremal cases. In addition, we also obtain factorized solutions, whose topology is the direct product of two-dimensional spaces of constant curvature (\(M_2\), \(dS_2\), or \(AdS_2\)) with (D-2)-sphere. We study all possible factorized channels.  相似文献   

14.
We obtain local well-posedness for the one-dimensional Schrödinger–Debye interactions in nonlinear optics in the spaces \(L^2\times L^p,\; 1\le p < \infty \). When \(p=1\) we show that the local solutions extend globally. In the focusing regime, we consider a family of solutions \(\{(u_{\tau }, v_{\tau })\}_{\tau >0}\) in \( H^1\times H^1\) associated to an initial data family \(\{(u_{\tau _0},v_{\tau _0})\}_{\tau >0}\) uniformly bounded in \(H^1\times L^2\), where \(\tau \) is a small response time parameter. We prove that \(\left( u_{\tau }, v_{\tau }\right) \) converges to \(\left( u, -|u|^2\right) \) in the space \(L^{\infty }_{[0, T]}L^2_x\times L^1_{[0, T]}L^2_x\) whenever \(u_{\tau _0}\) converges to \(u_0\) in \(H^1\) as long as \(\tau \) tends to 0, where u is the solution of the one-dimensional cubic nonlinear Schrödinger equation with the initial data \(u_0\). The convergence of \(v_{\tau }\) for \(-|u|^2\) in the space \(L^{\infty }_{[0, T]}L^2_x\) is shown under compatibility conditions of the initial data. For non-compatible data, we prove convergence except for a corrector term which looks like an initial layer phenomenon.  相似文献   

15.
We use MasterCode to perform a frequentist analysis of the constraints on a phenomenological MSSM model with 11 parameters, the pMSSM11, including constraints from \(\sim 36\)/fb of LHC data at 13 TeV and PICO, XENON1T and PandaX-II searches for dark matter scattering, as well as previous accelerator and astrophysical measurements, presenting fits both with and without the \((g-2)_\mu \) constraint. The pMSSM11 is specified by the following parameters: 3 gaugino masses \(M_{1,2,3}\), a common mass for the first-and second-generation squarks \(m_{\tilde{q}}\) and a distinct third-generation squark mass \(m_{\tilde{q}_3}\), a common mass for the first-and second-generation sleptons \(m_{\tilde{\ell }}\) and a distinct third-generation slepton mass \(m_{\tilde{\tau }}\), a common trilinear mixing parameter A, the Higgs mixing parameter \(\mu \), the pseudoscalar Higgs mass \(M_A\) and \(\tan \beta \). In the fit including \((g-2)_\mu \), a Bino-like \(\tilde{\chi }^0_{1}\) is preferred, whereas a Higgsino-like \(\tilde{\chi }^0_{1}\) is mildly favoured when the \((g-2)_\mu \) constraint is dropped. We identify the mechanisms that operate in different regions of the pMSSM11 parameter space to bring the relic density of the lightest neutralino, \(\tilde{\chi }^0_{1}\), into the range indicated by cosmological data. In the fit including \((g-2)_\mu \), coannihilations with \(\tilde{\chi }^0_{2}\) and the Wino-like \(\tilde{\chi }^\pm _{1}\) or with nearly-degenerate first- and second-generation sleptons are active, whereas coannihilations with the \(\tilde{\chi }^0_{2}\) and the Higgsino-like \(\tilde{\chi }^\pm _{1}\) or with first- and second-generation squarks may be important when the \((g-2)_\mu \) constraint is dropped. In the two cases, we present \(\chi ^2\) functions in two-dimensional mass planes as well as their one-dimensional profile projections and best-fit spectra. Prospects remain for discovering strongly-interacting sparticles at the LHC, in both the scenarios with and without the \((g-2)_\mu \) constraint, as well as for discovering electroweakly-interacting sparticles at a future linear \(e^+ e^-\) collider such as the ILC or CLIC.  相似文献   

16.
We consider the Dirichlet Laplacian \(H_\gamma \) on a 3D twisted waveguide with random Anderson-type twisting \(\gamma \). We introduce the integrated density of states \(N_\gamma \) for the operator \(H_\gamma \), and investigate the Lifshits tails of \(N_\gamma \), i.e. the asymptotic behavior of \(N_\gamma (E)\) as \(E \downarrow \inf \mathrm{supp}\, dN_\gamma \). In particular, we study the dependence of the Lifshits exponent on the decay rate of the single-site twisting at infinity.  相似文献   

17.
We investigate the decays of \(\bar{B}^0_s\), \(\bar{B}^0\) and \(B^-\) into \(\eta _c\) plus a scalar or vector meson in a theoretical framework by taking into account the dominant process for the weak decay of \(\bar{B}\) meson into \(\eta _c\) and a \(q\bar{q}\) pair. After hadronization of this \(q\bar{q}\) component into pairs of pseudoscalar mesons we obtain certain weights for the pseudoscalar meson-pseudoscalar meson components. In addition, the \(\bar{B}^0\) and \(\bar{B}^0_s\) decays into \(\eta _c\) and \(\rho ^0\), \(K^*\) are evaluated and compared to the \(\eta _c\) and \(\phi \) production. The calculation is based on the postulation that the scalar mesons \(f_0(500)\), \(f_0(980)\) and \(a_0(980)\) are dynamically generated states from the pseudoscalar meson-pseudoscalar meson interactions in S-wave. Up to a global normalization factor, the \(\pi \pi \), \(K \bar{K}\) and \(\pi \eta \) invariant mass distributions for the decays of \(\bar{B}^0_s \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0_s \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0 \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^0 \eta \), \(B^- \rightarrow \eta _c K^0 K^-\) and \(B^- \rightarrow \eta _c \pi ^- \eta \) are predicted. Comparison is made with the limited experimental information available and other theoretical calcualtions. Further comparison of these results with coming LHCb measurements will be very valuable to make progress in our understanding of the nature of the low lying scalar mesons, \(f_0(500), f_0(980)\) and \(a_0(980)\).  相似文献   

18.
In this paper we demonstrate that the selection of events with different multiplicities of produced particles, leads to the violation of the azimuthal angular symmetry, \(\phi \rightarrow \pi - \phi \). We find for LHC and lower energies, that this violation can be so large for the events with multiplicities \(n \ge 2 \bar{n}\), where \(\bar{n}\) is the mean multiplicity, that it leads to almost no suppression of \(v_n\), with odd n. However, this can only occur if the typical size of the dipole in DIS with a nuclear target is small, or \(Q^2 \,>\,Q^2_s\left( A; Y_{\mathrm{min}},b\right) \), where \(Q_s\) is the saturation momentum of the nucleus at \(Y = Y_{\mathrm{min}}\). In the case of large sizes of dipoles, when \(Q^2 \,<\,Q^2_s\left( A; Y_{\mathrm{min}},b\right) \), we show that \(v_n =0\) for odd n. Hadron-nucleus scattering is discussed.  相似文献   

19.
In this work, we study systematically the mass splittings of the \(qq\bar{Q}\bar{Q}\) (\(q=u\), d, s and \(Q=c\), b) tetraquark states with the color-magnetic interaction by considering color mixing effects and estimate roughly their masses. We find that the color mixing effect is relatively important for the \(J^P=0^+\) states and possible stable tetraquarks exist in the \(nn\bar{Q}\bar{Q}\) (\(n=u\), d) and \(ns\bar{Q}\bar{Q}\) systems either with \(J=0\) or with \(J=1\). Possible decay patterns of the tetraquarks are briefly discussed.  相似文献   

20.
Recent experimental observations of the charged hadron properties in \(U+U\) collisions at 193 GeV contradict many of the theoretical models of particle production including two-component Monte Carlo Glauber model. The experimental results show a small correlation between the charged hadron properties and the initial geometrical configurations (e.g. body–body, tip–tip etc.) of \(U+U\) collisions. In this article, we have modified the Monte Carlo HYDJET++ model to study the charged hadron production in \(U+U\) collisions at 193 GeV center-of-mass energy in tip–tip and body–body initial configurations. We have modified the hard as well as soft production processes to make this model suitable for \(U+U\) collisions. We have calculated the pseudorapidity distribution, transverse momentum distribution and elliptic flow distribution of charged hadrons with different control parameters in various geometrical configurations possible for \(U+U\) collision. We find that HYDJET++ model supports a small correlation between the various properties of charged hadrons and the initial geometrical configurations of \(U+U\) collision. Further, the results obtained in modified HYDJET++ model regarding \(dn_{ch}/d\eta \) and elliptic flow (\(v_{2}\)) suitably matches with the experimental data of \(U+U\) collisions in minimum bias configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号