首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose and experimentally demonstrate switchable and tunable transmission characteristics of a Mach–Zehnder interferometer comb filter based on thermal operation. Its temperature characteristics are investigated to reveal a shift in the peak wavelength position from 0.003 to 0.004 nm/°C and a tunable range of wavelength spacing of 0.76–0.90 nm for maximum and minimum effective lengths, respectively. This configuration provides the unique advantages of an all-fiber structure, tunable wavelength spacing, switchable spectral peaks, independent tuning of the center wavelength and wavelength spacing of the spectral peaks, and low polarization sensitivity. It is relatively simple to fabricate and expected to have applications in temperature fiber optic sensors and multiwavelength fiber laser sources.  相似文献   

2.
We propose and experimentally demonstrate a both channel spacing and wavelength-tunable 1,060 nm multiwavelength fiber laser using nonlinear polarization rotation of semiconductor optical amplifier (SOA). The SOA in the cavity can not only provide the gain but also generate a pump power controlled phase-shift between two orthogonal linear states of polarization. The experimental result shows that the fast and continuous wavelength tuning is achieved with external light injection, while the channel spacing of the multiwavelength laser can be varied by adjusting the length of polarization maintaining fiber. When an external laser source with 13 dBm power is injected into the SOA as a control pump, optically tunable operation of up to 20 wavelength channels, from 1,042 to 1,058 nm, with a wavelength spacing of 0.8 nm has been demonstrated with the signal-to-spontaneous-noise ratio over 40 dB at room temperature. The lasers are stable with a maximum power fluctuation per channel of less than 0.5 dB during 2-h test.  相似文献   

3.
基于多模光纤滤波器的可调谐掺铒光纤激光器   总被引:1,自引:0,他引:1  
研究了一种新型、全光纤、宽带可调谐环形腔掺铒光纤激光器。该激光器利用由单模-多模-单模光纤组成的滤波器实现波长可调谐及激光器的全光纤结构。该滤波器将多模光纤缠绕在偏振控制器上,两端分别与一段单模光纤相连,通过调整偏振控制器的状态,实现了中心波长1542~1560nm的不同激光输出。单波长连续可调谐激光器的波长可调范围为18nm,边模抑制比大于40dB,3dB线宽为0.096nm;进一步调整偏振控制器的状态和抽运功率,实验同时得到了连续可调谐的双波长、三波长等多波长激光输出。对于可调谐的多波长激光器,通过调整偏振控制器的状态,可实现波长间隔及输出中心波长两者可调。  相似文献   

4.
8字形腔波长可调谐锁模脉冲光纤激光器   总被引:4,自引:4,他引:0  
采用非线性光纤环形镜加脉冲锁模技术及可调谐光纤光栅滤波器,对8字形腔被动锁模掺铒光纤激光器进行了波长可调谐输出的实验研究.在EDFA抽运光功率一定的情况下,通过调节偏振控制器和可调谐光纤光栅滤波器,获得了光谱稳定、重复频率1.1 MHz、输出功率起伏小于0.8 dBm、中心波长在1 548~1 570 nm内连续可调的短脉冲输出.该激光器可实现自启动锁模,且长时间稳定工作无需任何调整.  相似文献   

5.
稳定可调谐的单纵模多环形腔掺铒光纤激光器   总被引:2,自引:1,他引:1  
提出了一种多环形腔(MRC)结构的稳定可调的单纵模(SLM)掺铒光纤激光器,多环形腔结构由双环形有源腔和两个次级无源腔组成.这种激光器是利用光纤法布里珀罗可调滤波器(FFP-TF)以及光学光栅滤波器(OGF)两种滤波器和多环形腔结构相结合来共同选模.可实现波长调节范围为1528~1565 nm,在整个波长调节范围内边模抑制比大于44.53 dB,在1554 nm附近边模抑制比可以达到最大值51.18 dB, 输出功率为-8.84 dBm,通过应用多环型腔结构,激光器的输出很稳定,在18 min的观察时间内,中心波长的变化小于0.02 nm,输出功率的变化小于0.04 dBm,实现了稳定且可调谐的单纵模输出.  相似文献   

6.
A widely tunable and stable erbium-doped fiber laser based on four-wave mixing effect in a highly nonlinear fiber is proposed and experimentally demonstrated. By adjusting reflected power from a dual-selective element, the ring laser is switchable between single- and dual-wavelength operations. The tuning range of the single laser is 22.78 nm, from 1,542.07 to 1,564.85 nm, while the wavelength spacing of the dual-wavelength can be continuously tuned from 0.52 to 22.78 nm. The laser is stable with output peak power fluctuation of <1 dB in 30-min interval.  相似文献   

7.
A dual-pass Mach–Zehnder interferometer filter using a section of twin-core fiber (TCF) loop mirror is proposed. The filter is theoretically and experimentally studied for various interferometer arm difference when TCF length is constant. Theoretical results are validated by the experimental demonstration and in good agreement with the experimental results. And then, by using the filter in a ring fiber laser, a stable and switchable dual-wavelength lasing is obtained experimentally. The 3-dB bandwidth and the SMSR of the output laser are 0.015 nm and higher than 62.4 dB, respectively. The peak power fluctuation and wavelength shift are also monitored to be less than 0.04 dB and 0.02 nm over an hour at room temperature. Furthermore, the output laser can be switched between single and dual wavelength by carefully adjusting the PCs. The experimental results show that the filter can suppress mode competition effectively, improve the SMSR availably, and enhance the stability of the output lasing.  相似文献   

8.
A widely tunable mode-locked all-fiberized Yb-doped fiber laser with near-transform-limited spectrum linewidth is used. It consists of a tunable fiber Bragg grating (TFBG) and a fiber-coupled LiNbO3 phase modulator (PM) in a linear cavity. The TFBG is used to achieve tunable emission wavelength, and the intracavity PM is used to achieve actively mode-locking operation. We have experimentally demonstrated that the laser-emitting wavelength can be tuned between 1,041 and 1,091 nm with power fluctuation less than 3 dB. The temporal width of the laser pulse is about 1 ns, and the pulses are near transform-limited with a spectral linewidth of 1.3 GHz. The results may find useful application in optical communication and optical measurement system.  相似文献   

9.
A wideband tunable optoelectronic oscillator (OEO) based on a dispersion compensated phase modulated microwave photonics filter (MPF) is proposed and experimentally demonstrated. The MPF, consisting of a tunable laser source (TLS), a phase modulator, a fiber Bragg grating Fabry–Perot filter and a photodetector, is used as the oscillating mode selection device. Dual-loop configuration is employed to make sure the OEO operates at a single oscillating mode. Theoretically analysis is carried out to demonstrate the tuning range limitation due to the phase-modulation to intensity-modulation conversion caused by long single mode fiber (SMF). To overcome this disadvantage and expand the signal tuning range, a dispersion compensation fiber is introduced followed by the SMF to compensate the fiber dispersion. By simply adjusting the wavelength of the TLS, an ultra-wideband tunable microwave signal with the frequency tuning range from 2 to 44 GHz is obtained. The phase noise is also investigated and measured to be less than ? 110 dBc/Hz at an offset of 10 kHz within the whole frequency range.  相似文献   

10.
In this paper, we observed and experimentally investigated a high-performance single- and dual-wavelength erbium-doped fiber ring laser based on a Sagnac filter which contains a section of high-birefringence photonic crystal fiber (HB-PCF) and a polarization controller. Incorporation of the high-birefringence photonic crystal fiber can suppress multimode oscillation, improve power stability and increase the optical signal-to-noise ratio (SNR). Wavelength tunable was achieved by using a polarization controller in the Sagnac filter. Highly stable single-, dual-wavelength oscillations are tunable within a wavelength range from 1550 to 1562 nm and SNR as high as 57 dB with narrow line width about 0.011 nm, is experimentally demonstrated.  相似文献   

11.
A tunable, low-repetition rate, all-normal-dispersion Yb-doped fiber laser (YDFL) that is passively mode locked based on a phase shifted long period fiber grating (PS-LPFG) is demonstrated and proposed. The mode-locking mechanism of the laser is based on nonlinear polarization evolution (NPE). Using a PS-LPFG as the spectral filter in the laser cavity, the mode-locked output wavelength can be tuned continuously and smoothly over a spectral range of 10 nm, which is the first time implementation of a tunable giant chirped pulse with all-fiber format bandpass filter in YDFL. The maximum output pulse energy is 38.9 nJ at the repetition rate of 2.499 MHz.  相似文献   

12.
We propose and demonstrate a novel tunable and switchable all-fiber comb filter by employing a polarization beam splitter (PBS)-based two-stage cascaded Mach-Zehnder (M-Z) interferometer. The proposed comb filter consists of a rotatable polarizer, a fiber PBS, a non-3-dB coupler and a 3-dB coupler. By simply adjusting the polarization state of the input light, the dual-function of channel spacing tunable and wavelength switchable (interleaving) operations can be efficiently obtained. The theoretical analysis is verified by the experimental results. A comb filter with both the channel spacing tunable from 0.18 nm to 0.36 nm and the wavelength switchable functions is experimentally demonstrated.  相似文献   

13.
We proposed and experimentally demonstrated an all-fiber structured programmable optical bandpass filter (waveshaper) based on a linearly chirped fiber Bragg grating and a digital-controlled thermal array. The key parameters of this filter such as the number of transmission channels, passing bandwidth per channel, central wavelength as well as the channel spacing can be reconfigured independently and flexibly by a program-controlled circuit. We have achieved in experiments the tunable passing bandwidth ranging from < 0.04 to 1.55 nm, adjustable central wavelength ranging from 1,547.16 to 1,558.64 nm, and a minimum wavelength spacing of 0.91 nm. The insertion loss of the whole device and the sideband rejection ratio are about 1.76 and 28 dB, respectively.  相似文献   

14.
We experimentally demonstrate the coherent combining of two tunable erbium-doped fiber lasers by using a single-mode fiber feedback loop configuration. A single-mode fiber is arranged in the feedback loop to filter the far-field pattern, and the energy of desired in-phase mode is collected and injected into the resonators of two component fiber lasers. The coherently combined laser is tunable over a wide spectrum ranging from 1536 to 1569 nm, which means that the combining scheme is compatible with wavelength tuning. The effects and necessity of whether adopting polarization controlling measures or not in component lasers are investigated in detail. The results indicate that adding polarization controlling can improve the array's coherence, whereas it will decrease the output power and efficiency simultaneously.  相似文献   

15.
A compact erbium-doped ring-shaped fiber laser suitable for fiber-optic sensing applications has been developed. The fiber laser utilized a tunable fiber Fabry–Perot filter as the tuning element and had a moderate milli-Watt level power output over almost the whole tuning range from 1530 to 1595 nm with a power fluctuation of 0.15 dB. High repetition rate scanning of laser operation over the whole tuning range was achieved at rates of up to 200 Hz. Moreover, the performance of the ring-shaped fiber laser configured with a high-concentration erbium-doped fiber was investigated for its larger wavelength tunability of over 100 nm. Output power characteristics of this ring-shaped fiber laser were also investigated when it worked in a scanning mode. A distorted power wavelength dependence, as well as some pulsing phenomenon were observed in scanning mode.  相似文献   

16.
A novel tunable microwave photonic notch filter using a phase-modulated dual-wavelength fiber laser is presented. A stable dual-wavelength erbium-doped fiber laser with a linear cavity is formed by a polarization-maintaining uniform fiber Bragg grating (PM-FBG) and a polarization maintaining linearly chirped fiber Bragg grating (PM-LCFBG), both of which were fabricated on a high-birefringence (Hi-Bi) fiber. It is found that a stable room-temperature dual-wavelength operation can be achieved due to the presence of two reflection peaks arising from the orthogonal states of polarization (SOP) of the PM-FBG. Experimental results show stable dual-wavelength lasing operation with a wavelength separation of ∼0.36 nm and a large optical signal-to-noise ratio (OSNR) of over 40 dB under room temperature. The dual-wavelength fiber laser is combined with a phase modulator and a segment of single-mode fiber (SMF) as a dispersive device to form a tunable microwave photonic notch filter. By stretching the PM-FBG to tune the wavelength separation of the dual-wavelength fiber laser, a tunable microwave photonic notch filter with various free spectral ranges (FSRs) and a rejection ratio greater than 35 dB was developed.  相似文献   

17.
A novel polarization filter based on plasmonic photonic crystal fiber with Au-coated and liquid-filled air holes is presented in this paper. The coupling theory is introduced to explain the complete coupling and incomplete coupling. We can adjust the resonance point to the communication band by optimizing the parameters of the fiber structure. Numerical simulation results demonstrate that the resonance strength can reach 489.78 dB cm\(^{-1}\) at the communication wavelength of 1.55 um in x-polarized direction. By filling liquid analyte the confinement loss can reach 572.55 dB cm\(^{-1}\) at the wavelength of 1.55 um. When the fiber length of L equals to 800 um, the peak value of the crosstalk can reach 394.75 dB at the wavelength of 1.55 um, and the bandwidth of the crosstalk better than 20 dB is up to 180 nm when the length of the fiber L is 200 um. These features make it a promising candidate for designing new types of polarization filter devices.  相似文献   

18.
In the paper, a ring double-Brillouin-frequency spaced multi-wavelength Brillouin erbium-doped fiber laser based on non-linear amplified fiber loop mirror filter is demonstrated, in which the non-linear amplified fiber loop mirror (AFLMF) is used as a filter. At the 980 nm pump power of 10.29 dBm, the tunable laser source center wavelength of 1563 nm and power of −3 dBm, up to 12 even output channels with 0.16 nm spacing are achieved. At the same time, we study the influence of 980 nm pump power, the polarization controller and the tunable laser source center wavelength on the number of Stokes light wave.  相似文献   

19.
The novel offset core photonic crystal fiber filter is designed and analyzed, whose dispersion relations and polarization characteristics are simulated by finite element method using COMSOL Multiphysics software. The filter structure is optimized by changing diameter of air holes and the thickness of Au layer. Simulation results show that loss of y-polarized mode reaches 657 dB/cm while the loss of x-polarized mode is very low at the communication window (\(1.55\,\upmu \hbox {m}\)). The crosstalk of filter reaches 56.2 dB at \(1.55\,\upmu \hbox {m}\) wavelength and the 20 dB band width of the filter is 100 nm when the propagation distance is \(1\,\upmu \hbox {m}\). Not only the filter shows good performance but also the proposed photonic crystal fiber can be applied to other fields.  相似文献   

20.
基于偏振态调谐原理,利用多个偏振控制器在环形腔掺Er3+光纤激光器中实现了连续可调谐、窄线宽、高信噪比的单频激光输出.连续调谐宽度达22 nm (1538~1560 nm),3 dB谱线宽度小于0.1 nm,光信号-自发辐射噪音比大于45 dB,最大输出功率约1 mW.在10~50 mW泵浦功率范围内,输出功率波动幅度小于1 dB.在室温下,工作数十个小时,中心波长漂移小于0.05nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号