首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystallization kinetics of Al91La5Ni4 amorphous ribbons produced by a melt-spinning method were studied by DSC analysis and X-ray diffraction. The effect of heating rate (from 4 to 200°C min-1) was investigated in the temperature range from 298 to 700 K. Increases the heating rate from 4 to 200°C min-1 resulted in increases of the temperature difference between the two stages of the transformation process: crystallization of Al and crystallization of the Al compounds from 148.9 to 167.4 K. The apparent activation energies for the first step, related to Al crystallization, and to the second step related to crystallization of Al4La and Al3Ni, were found to be 161±9 and 199±10 kJ mol-1, respectively. The results indicate the possibility of tailoring the heating treatment to produce the required fraction of the amorphous phase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Results of phase transformations, enthalpy released and specific heat of Ge22Se78–xBix(x=0, 4 and 8) chalcogenide glasses, using differential scanning calorimetry (DSC), under non-isothermal condition have been reported and discussed. The glass transition temperature, T g, is found to increase with an average coordination number and heating rates. Following Gibbs—Dimarzio equation, the calculated values of T g (i.e. 462.7, 469.7 and 484.4 K) and the experimental values (i.e. 463.1, 467.3 and 484.5 K) increase with Bi concentration. Both values of T g, at a heating rate of 5 K min–1, are found to be in good agreement. The glass transition activation energy increases i.e. 102±2, 109±3 and 115±8 kJ mol–1 with Bi concentration. The demand for thermal stability has been ensured through the temperature difference T cT g and the enthalpy released during the crystallization process. Below T g, specific heat has been observed to be temperature independent but highly compositional dependent. The growth kinetic has been investigated using the Kissinger, Ozawa, Matusita and modified JMA equations. Results indicate that the crystallization ability is enhanced, the activation energy of crystallization increases with increasing the Bi content and the crystal growth of these glasses occur in 3 dimensions.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
The influence of the heating rate on phase transformation and microstructural evolution during sintering of a de-agglomerated nanocrystalline, transition alumina was investigated. A low heating rate treatment allowed to decrease the α-Al2O3 crystallization temperature as well as to displace densification at lower temperatures, also implying a refinement of the fired microstructures. In addition, the set-up of sintering cycles in which the heating rate changed in the range 0.5–20°C min−1 starting from intermediate, selected temperatures resulted in a further retention of a very fine and homogeneous grain size in final materials.  相似文献   

4.
This paper describes the effect of sulfate, phosphate and nitrate complexing ligands on the structural features of amorphous xerogels and on the crystallization of metastable zirconia phases during the xerogel-ceramic conversion. Powdered samples were prepared by a sol–gel route using zirconyl chloride precursors chemically modified by complexing ligands. The structural evolution of ZrO2 phases as function of firing temperature was analyzed by XRPD, EXAFS and 31P NMR/MAS. The experimental results show the formation of metastable t-ZrO2 during the low firing temperature of xerogels modified by sulfate or phosphate groups. The martensitic tetragonal-monoclinic transformation occurs during desorption of sulfate groups. The largest temperature interval of stability of metastable tetragonal zirconia was observed for phosphate-modified xerogels.  相似文献   

5.
We have established time–temperature transformation and continuous-heating transformation diagrams for poly(ether–ether–ketone) (PEEK) and PEEK/poly(ether–imide) (PEI) blends, in order to analyze the effects of relaxation control on crystallization. Similar diagrams are widely used in the field of thermosetting resins. Upon crystallization, the glass transition temperature (Tg) of PEEK and PEEK/PEI blends is found to increase significantly. In the case of PEEK, the shift of the α-relaxation is due to the progressive constraining of amorphous regions by nearby crystals. This phenomenon results in the isothermal vitrification of PEEK during its latest crystallization stages for crystallization temperatures near the initial Tg of PEEK. However, vitrification/devitrification effects are found to be of minor importance for anisothermal crystallization, above 0.1°C/min heating rate. In the case of PEEK/PEI blends, amorphous regions are progressively enriched in PEI upon PEEK crystallization. This promotes a shift of the α-relaxation of these regions to higher temperatures, with a consequent vitrification of the material when crystallized below the Tg of PEI. The data obtained for the blends in anisothermal regimes allow one to detect a region in the (temperature/heating rate) plane where crystallization proceeds in the continuously close proximity of the glass transition (dynamic vitrification). These experimental findings are in agreement with simple simulations based on a modified Avrami model coupled with the Fox equation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 919–930, 1998  相似文献   

6.
Copper-doped zirconia (1% mol) and zirconia powders were prepared by the sol–gel process, using zirconium n-butoxide and copper nitrate as precursors. The resulting xerogels are nanocrystalline and exhibit different properties from the corresponding microcrystalline materials. The copper nitrate salt was dissolved and co-gelled in situ at the initial stage of the reaction. The properties of the resulting materials were studied by XRD, FTIR and UV-Vis. The as-prepared samples were amorphous and crystallized to the tetragonal zirconia phase at 400 °C. At temperatures higher than 600 °C, the monoclinic phase was also obtained. No evidence of discrete crystalline copper compounds was observed, consistent with good dispersion of the dopant. Several bands were observed by FTIR in the 4400–3000 cm–1 region, which diminishes in intensity and shifted to higher wavenumbers with heating. The bandgap energy (Eg) was strongly modulated by the presence of the dopant and heating temperature, with increasing temperature leading to a corresponding decrease in Eg.  相似文献   

7.
The heatQ of transformation of the chains in amorphous sulphur was measured calorimetrically. The mean value ¯Q for samples remelted atT f=443 K increases from 31.5 to 45.9 J g–1 in the measurement temperature range from 288 to 303 K.For samples remelted in theT f range from 443 to 573 K, the ¯Q values are from 30.6 to 24.0 J g–1.The results are discussed on the basis of the theory of nucleation and growth of nuclei.  相似文献   

8.
Amorphous Mg61Cu24Y15 ribbons were manufactured by melt-spinning at wheel speeds in the range 5?C20?ms?1. The crystallization behavior of amorphous ribbons was investigated by a combination of differential scanning calorimetry (DSC) and X-ray diffractometry. DSC measurements showed that the amorphous ribbons exhibit distinct glass transition temperature and wide supercooled liquid region before crystallization. During continuous heating three exothermic peaks and two endothermic peaks were observed. The characteristic thermodynamic parameters such as T g, T x , ??T x , and T rg are around 432?C439, 478?C485, 46?C54?K, and 0.55?C0.56, respectively. Isothermal annealing DSC traces for this amorphous alloy, the first crystallization peak showed a clear incubation period and Avrami exponent was found to be 2.30?C2.74, which indicate that the transformation reaction involved nucleation and three-dimensional diffusion controlled growth. Mechanical properties of the as-quenched and subsequently annealed ribbons were examined by Vickers microhardness (HV) measurements. Results showed that microhardness of the as-quenched ribbons were about 309?HV. However, the results also showed that microhardness of the rapidly solidified ribbons increases with the increasing temperature.  相似文献   

9.
The crystallization kinetics of amorphous Cu50Ti50 has been studied using differential scanning calorimetry (DSC) under non-isothermal conditions. The curves at different linear heating rates (2, 4, 8 and 16 K min–1) show sharp crystallization peaks. The crystallization peak shifts to higher temperatures with increasing heating rate. The Kissingers method of analysis of the shift in the transformation peak is applied to evaluate the activation energy (E c). The KJMA formalism, which is basically developed for isothermal experiments, is also used to obtain E c and the Avrami parameter (n).The DSC data have been analysed in terms of kinetic parameters, viz. activation energy (E c), Avrami exponent (n) and frequency factor K 0 using three different theoretical models. It is observed that the activation energy values derived from KJMA approach and modified Kissinger equation agree fairly well with each other. The activation energy values obtained from normal Kissinger method, and Gao and Wang expression underestimate the activation energy.The financial support provided by All India Council for Technical Education (AICTE), New Delhi (Govt. of India) is gratefully acknowledged.  相似文献   

10.
A second type of cation (Mg2+, Ca2+) was introduced into BaF2 by low‐temperature atomic beam deposition. The structure evolution from low‐temperature (–150 °C) amorphous deposits to high‐temperature (< 1000 °C) annealed crystalline phases was studied by in‐situ transmission electron microscopy and X‐ray diffraction. Amorphous (Ba0.5, Ca0.5)F2 crystallizes in a first step to metastable solid solution phase (fluorite‐type), which then decomposes into the pure phases of CaF2 and BaF2 at higher temperature. The crystallization behavior of amorphous (BaxMg1–x)F2 is completely different. When the Mg/Ba atomic ratio is around 1:1, the mixture transforms to the ternary compound BaMgF4 at annealing, and no decomposition occurs by further heating up to 1000 °C. When the Ba concentration is below 15 % in atomic ratio (x < 0.15), the mixture forms a solid solution phase (rutile type) with the lattice expanded by +1 % compared to rutile type MgF2. The difference between the phase evolutions of the two mixture systems is discussed.  相似文献   

11.
The non-isothermal crystallization of α-Fe from Fe81B13Si4C2 amorphous alloy was investigated. The kinetic parameters of crystallization process were determined by Kissinger and Kissinger–Akahira–Sunose (KAS) methods. It was established that the kinetic parameters of transformation do not change with the degree of crystallization in the range of 0.1–0.7. The kinetic model of the crystallization process was determined using the Malek's procedure. It was established that the primary crystallization α-Fe phase from amorphous alloy can be described by Šesták–Berggren autocatalytic model with kinetic triplet Ea = 349.4.0 kJ mol−1, ln A = 50.76 and f(α) = α0.72(1 − α)1.02.  相似文献   

12.
The present article deals with the differential scanning calorimetric (DSC) study of Se?CTe glasses containing Sn. DSC runs are taken at four different heating rates (10, 15, 20 and 25?K?min?1). The crystallization data are examined in terms of modified Kissinger, Matusita equations, Mahadevan method and Augis and Bennett approximation for the non-isothermal crystallization. The activation energy for crystallization (E c) is evaluated from the data obtained at different heating rates. Activation energy of glass transition is calculated by Kissinger??s relation and Moynihan theory. The glass forming tendency is also calculated for each composition. The glass transition temperature and peak crystallization temperature increases with the increase in Sn % as well as with the heating rate.  相似文献   

13.
The poly(p‐phenylene sulfide) (PPS) nonisothermal cold‐crystallization behavior was investigated in a wide heating rate range. The techniques employed were the usual Differential Scanning Calorimetry (DSC), and the less conventional FT‐IR spectroscopy and Energy Dispersive X‐ray Diffraction (EDXD). The low heating rates (Φ) explored by EDXD (0.1 K min?1) and FT‐IR (0.5–10 K min?1) are contiguous and complementary to the DSC ones (5–30 K min?1). The crystallization temperature changes from 95 °C at Φ = 0.05 K min?1 to 130 °C at Φ = 30 K min?1. In such a wide temperature range the Kissinger model failed. The model is based on an Arrhenius temperature dependence of the crystallization rate and is widely employed to evaluate the activation energy of the crystallization process. The experimental results were satisfactorily fit by replacing in the Kissinger model the Arrhenius equation with the Vogel–Fulcher–Tamann function and fixing U* = 6.28 k J mol?1, the activation energy needed for the chains movements, according to Hoffmann. The temperature at which the polymer chains are motionless (T = 42 °C) was found by fitting the experimental data. It appears to be reasonable in the light of our previously reported isothermal crystallization results, which indicated T = 48 °C. Moreover, at the lower heating rate, mostly explored by FT‐IR, a secondary stepwise crystallization process was well evidenced. In first approximation, it contributes to about 17% of the crystallinity reached by the sample. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2725–2736, 2005  相似文献   

14.
The total conductivity of oxygen-hyperstoichiometric YBaCo4O7+ is predominantly p-type electronic at oxygen partial pressures from 5×104 Pa down to the phase decomposition limit, 10–11–10–4 Pa at 973–1223 K. The ion transference numbers, determined by the oxygen permeation and faradaic efficiency measurements at 1073–1223 K, vary in the range 3×10–5–2×10–4 and increase with temperature. The oxygen permeability of YBaCo4O7+ ceramics, with overall level similar to that of K2NiF4-type cuprates, is mainly limited by the bulk ionic conduction. Heating above 1050–1100 K and redox processes under oxidizing conditions lead to a first-order transition accompanied with extensive oxygen losses from the lattice, resulting in decreasing total oxygen content from 8.5 down to approximately seven atoms per unit formula. Except for the variations associated with this transition, the electron–hole conductivity and Seebeck coefficient are essentially p(O2)-independent within the phase stability limits. The use of different synthesis methods, namely the standard ceramic technique and the glycine–nitrate process, has no significant effect on the properties of YBaCo4O7+ ceramics. The thermal expansion coefficients averaged at 600–1100 K in air are (7.3–7.6)×10–6 K–1. Porous YBaCo4O7-based cathodes show a very high electrochemical activity in contact with LaGaO3-based solid electrolyte at 873–1073 K.  相似文献   

15.
-spodumene (LiAlSi2O6) is one of the crystalline phase of the lithium aluminosilicate (LAS) glass-ceramics, having a low thermal expansion coefficient. The sol–gel process is an advantageous processing route for LAS materials, compared to melting, as it avoids lithium oxide losses and formation of undesired crystalline phases. It is very important to understand the crystallisation kinetics in order to assess the amount of the different crystalline phases formed for a given thermal cycle. This study reports the application of the non-isothermic method for evaluation of crystallization kinetic parameters, based on differential thermal analysis (DTA) experiments under constant heating rates (10, 12, 15 and 20°C min–1) up to 1000°C. The Johnson-Mehl-Avrami (JMA) theory, modified with distinct approaches, lead to Avrami coefficients, n, in the range of 2.1–2.4 and apparent activation energies, Ea, of 345–362 kJ mol–1. A simultaneous tridimensional and bidimensional crystal growth mechanism for a constant number of nuclei is proposed for -spodumene crystallization.  相似文献   

16.
We present three Mg–formate frameworks, incorporating three different ammoniums: [NH4][Mg(HCOO)3] ( 1 ), [CH3CH2NH3][Mg(HCOO)3] ( 2 ) and [NH3(CH2)4NH3][Mg2(HCOO)6] ( 3 ). They display structural phase transitions accompanied by prominent dielectric anomalies and anisotropic and negative thermal expansion. The temperature‐dependent structures, covering the whole temperature region in which the phase transitions occur, reveal detailed structural changes, and structure–property relationships are established. Compound 1 is a chiral Mg–formate framework with the NH4+ cations located in the channels. Above 255 K, the NH4+ cation vibrates quickly between two positions of shallow energy minima. Below 255 K, the cations undergo two steps of freezing of their vibrations, caused by the different inner profiles of the channels, producing non‐compensated antipolarization. These lead to significant negative thermal expansion and a relaxor‐like dielectric response. In perovskite 2 , the orthorhombic phase below 374 K possesses ordered CH3CH2NH3+ cations in the cubic cavities of the Mg–formate framework. Above 374 K, the structure becomes trigonal, with trigonally disordered cations, and above 426 K, another phase transition occurs and the cation changes to a two‐fold disordered state. The two transitions are accompanied by prominent dielectric anomalies and negative and positive thermal expansion, contributing to the large regulation of the framework coupled the order–disorder transition of CH3CH2NH3+. For niccolite 3 , the gradually enhanced flipping movement of the middle ethylene of [NH3(CH2)4NH3]2+ in the elongated framework cavity finally leads to the phase transition with a critical temperature of 412 K, and the trigonally disordered cations and relevant framework change, providing the basis for the very strong dielectric dispersion, high dielectric constant (comparable to inorganic oxides), and large negative thermal expansion. The spontaneous polarizations for the low‐temperature polar phases are 1.15, 3.43 and 1.51 μC cm?2 for 1 , 2 and 3 , respectively, as estimated by the shifts of the cations related to the anionic frameworks. Thermal and variable‐temperature powder X‐ray diffraction studies confirm the phase transitions, and the materials are all found to be thermally stable up to 470 K.  相似文献   

17.
Ti-based amorphous alloys produced by ultra-rapid melt cooling represent an excellent option as biomaterials because of their mechanical properties and corrosion resistance. However, complete elimination of toxic elements is affecting the glass-forming ability and amorphous structure could be obtained only for thin ribbons or powders that are subsequently processed by powder metallurgy. Amorphous ribbons of special Ti42Zr40Ta3Si15 alloy, which is completely free of any toxic element, were produced by melt spinning, and the thermostability of resulting material was investigated in order to estimate its ability for further heat processing. Isochronal differential scanning calorimetry (DSC) was used to determine transformation points such as glass transition temperature T g or crystallization temperature T x. The activation energy for crystallization of amorphous phase was calculated based on Kissinger method, using heating rates ranging between 5 and 20 °C min?1. Amorphous structure of resulting ribbon was evidenced by means of X-rays diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). It was determined that amorphous Ti42Zr40Ta3Si15 alloy has a high activation energy for crystallization, similar to other Ti-based amorphous alloys, which provides good thermal stability for subsequent processing, especially by means of powder metallurgy techniques.  相似文献   

18.
The conditions of thermal decomposition of copper(II) benzenetricarboxylates in air atmosphere at heating rates of 10 and 5 deg·min–1 were studied. At 10 deg · min–1, the hemimellitate and trimesinate of copper(II) lose crystallization water and then decompose directly to CuO, whereas at 5 deg·min–1 they decompose to CuO through Cu2O. The trimellitate of copper(II) heated at various rates decomposes in the same way: it loses 1 water molecule and then decomposes directly to CuO.  相似文献   

19.
The results of the investigations of thermal behaviour of Li2ZrO3, prepared in the amorphous state by means of sol-gel technique are demonstrated. The thermal treatment was carried out in air under constant heating rate of 5 deg·min–1 and cooling rate of 2.5 deg·min–1. The methods of DTA, TG, Emanation Thermal Analysis (ETA) and dilatometry were used, for characterization of the thermal behaviour in dynamic conditions. The X-ray diffraction patterns were used for characterization of the phase changes observed by TA Methods.
Zusammenfassung Ergebnisse aus Untersuchungen des thermischen Verhaltens von Li2ZrO3, hergestellt mittels einer Sol-Gel-Technik im amorphen Zustand werden dargelegt. Die thermische Behandlung wurde in Luft bei einer konstanten Aufheizgeschwindigkeit von 5 Grad·min–1 und einer Abkühlgeschwindigkeit von 2,5Grad·min–1 durchgeführt. Zur Beschreibung des thermischen Verhaltens unter dynamischen Verhältnissen wurden DTA, TG, Emanationsthermoanalyse und Dilatometrie angewendet. Zur näheren Charakterisierung der bei TG beobachteten Phasenumwandlungen wurde Röntgendiffraktion verwendet.
  相似文献   

20.
The freezing–thawing process of aqueous ethanol solutions has been studied by differential scanning calorimetry (DSC) in an intermediate concentration range higher than about 30 wt% of the alcohol. Two kinds of ethanol hydrate solid were confirmed to exist: EtOH⋅4.67H2O with a melting peak (D1∗) at −64.5C and EtOH⋅4.75H2O with a melting peak (D2∗) at −63.1C. The peak D1∗ appears just after mixing ethanol and water. However, the peak curiously shifts to the D2∗ peak after storage for a few days or more at room temperature. The phenomenon was accelerated by heating or by repetition of the freezing–thawing process. The origin of the phenomenon has been discussed in relation to the state of solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号