首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
表面增强拉曼散射强度与金纳米粒子粒径关系   总被引:1,自引:0,他引:1  
表面增强拉曼散射(SurfaceenhancedRamanscattering,简称SERS)的增强机理主要分为两类’‘-‘’:电磁增强和化学增强.通常SERS活性表面的获得需要粗糙化.MOSkovitS最先提出,可将粗糙化的SERS活性表面模型化为平整金属基底上排列的金属胶体粒子“’.这样的模型与实际体系比较符合,同时给理论处理提供了便利.在这一模型基础之上,人们提出了一系列SERS电磁增强的理论计算方法’‘-“.在这些理论计算中,大多包含有SERS强度与粒径关系的结果.粒径对SERS强度的影响体现在两方面:1)SERS与粗糙度有关,粒径可视为粗…  相似文献   

2.
Gold nanoparticles were assembled on gold substrates with the self-assembled monolayer(SAM) of p-minothiophenol(PATP). AFM measurements disclose that gold nanoparticles are scattered over the surface of the substrate with a submonolayer coverage. The Raman signal of the coupling layer, the SAM of PATP, can be well observed. Potential-dependent measurements were performed to study the chemical enhancement in SERS of such a system. Based on the supposition that the direction of charge transfer is from gold nanoparticles to PATP, it is deduced that Herzberg-Teller contribution has ruled in the SERS of such a system.  相似文献   

3.
采用氧化铝模板由交流电沉积制备纯银纳米线.然后借助化学还原法,在已制备好的银线表面包裹不同厚度的金壳层,得到具有核壳结构的AgcoreAushell复合纳米线.电子显微镜(SEM,TEM)显示该复合结构纳米线表面形貌与加入的金盐量有关,而且包裹层较薄的复合纳米线表面存在大量的孔洞.循环伏安测试表明,具有孔洞效应的复合纳米线经多次循环扫描后即可过渡到无孔洞效应的表面.以对巯基苯胺(PATP)作为探针分子的表面增强拉曼光谱,可用于表征纳米材料的表面结构.  相似文献   

4.
Core-shell Au-Pt nanoparticles were synthesized by using a seed growth method and characterized by transmission electron microscopy, X-ray diffraction, and UV-vis spectroscopy. Au(core)-Pt(shell)/GC electrodes were prepared by drop-coating the nanoparticles on clean glassy carbon (GC) surfaces, and their electrochemical behavior in 0.5 M H2SO4 revealed that coating of the Au core by the Pt shell is complete. The electrooxidation of carbon monoxide and methanol on the Au(core)-Pt(shell)/GC was also examined, and the results are similar to those obtained on a bulk Pt electrode. High quality surface-enhanced Raman scattering (SERS) spectra of both adsorbed CO and thiocyanate were observed on the Au(core)-Pt(shell)/GC electrodes. The potential-dependent SERS features resemble those obtained on electrochemically roughened bulk Pt or Pt thin films deposited on roughened Au electrodes. For thiocyanate, the C-N stretching frequency increases with the applied potential, yielding two distinctly different dnu(CN)/dE. From -0.8 to -0.2 V, the dnu(CN)/dE is ca. 50 cm(-1)/V, whereas it is 90 cm(-1)/V above 0 V. The bandwidth along with the band intensity increases sharply above 0 V. At the low-frequency region, Pt-NCS stretching mode at 350 cm(-1) was observed at the potentials from -0.8 to 0 V, whereas the Pt-SCN mode at 280 cm(-1) was largely absent until around 0 V and became dominant at more positive potentials. These potential-dependent spectral transitions were attributed to the adsorption orientation switch from N-bound dominant at the negative potential region to S-bound at more positive potentials. The origin of the SERS activity of the particles is briefly discussed. The study demonstrates a new method of obtaining high quality SERS on Pt-group transition metals, with the possibility of tuning SERS activity by varying the core size and the shell thickness.  相似文献   

5.
电化学沉积法制备金(核)-铜(壳)纳米粒子阵列   总被引:2,自引:0,他引:2  
曹林有  刁鹏  刘忠范 《物理化学学报》2002,18(12):1062-1067
以组装在有机分子自组装膜/金基底电极上的Au纳米粒子阵列为电化学沉积模板,制备了金(核)-铜 (壳)纳米粒子阵列.选用巯基十一胺(AUDT)和巯基癸烷(DT)混合自组装膜作为基底电极与Au纳米粒子的耦联层,可以在一定的电位下实现金属Cu在Au纳米粒子上的选择性沉积.将沉积电位控制在-0.03 V(vs SCE)时,沉积初期(t ≤ 15 s,沉积粒子粒径 ≤ 20 nm )金(核)-铜 (壳)粒子具有良好的单分散性和近似球形,而且粒径实验值同计算值非常吻合.  相似文献   

6.
铁氧化物/金磁性核壳纳米粒子的制备及其富集与SERS研究   总被引:3,自引:0,他引:3  
本文用种子生长法制备铁氧化物/金磁性核壳纳米粒子, 并利用SERS对其磁场靶向性进行了检测.  相似文献   

7.
SERS of C(60)/C(70) adsorbed on gold nanoparticles coated on filter paper or filter film was studied. As a new SERS substrate, dried gold-coated filter paper or filter film has a high SERS activity, whose enhancement factor can be up to about 10(5), because it avoided the influence of solvents in C(60)/C(70) solution and water in gold hydrosols. The influence of the gold thickness coated on filter paper or filter film to SERS of C(60)/C(70) adsorbed on gold nanoparticles was mainly discussed. It is indicated that the SERS effect of C(60)/C(70) was very sensitive to the distribution and aggregated characteristics of gold nanoparticles, and the SERS intensity of each mode increased at its own proportion, but it integrally tended to saturation when the thickness of colloidal gold coatings increased.  相似文献   

8.
Certain colloidal metals such as.silver (Ag), gold (Au) and copper, (Cu), when properly or assembled, display remarkable enhancement effect to the Raman scattering cross section of adsorbed molecules. This surface-enhanced Raman scattering (SERS) phenomenon has found wide applications in the study of interfacial chemical processes and is a potentially non-invasive technique in molecule-specific analysis. However, the SERS activity of metal colloids depends sensitively on both the synthetic method and the aggregation and assembly procedure, making it difficult to develop SERS into a reliable and quantitative analytical technique. To solve this problem, one needs to develop a substrate with a well-defined adsorption area and SERS activity. One approach to achieve this goal is to assemble a monolayer of uniform colloidal metals onto a well-defined secondary substrate. Here we report our effort in assembling monolayers of uniform Au nanoparticles on the well-defined optical-inactive microparticles in a layer-by-layer (LbL) manner and the use of such assembly as SERS-active substrate.  相似文献   

9.
This paper reports an accurate synthesis of surface-enhanced Raman scattering (SERS) active substrates, based on gold colloidal monolayer, suitable for in situ environmental analysis. Quartz substrates were functionalized by silanization with (3-mercaptopropyl)trimethoxysilane (MPMS) or (3-aminopropyl)trimethoxysilane (APTMS) and they subsequently reacted with colloidal suspension of gold metal nanoparticles: respectively, the functional groups SH and NH2 bound gold nanoparticles. Gold nanoparticles were prepared by the chemical reduction of HAuCl4 using sodium tricitrate and immobilized onto silanized quartz substrates. Active substrate surface morphology was characterized with scanning electron microscopy (SEM) measurements and gold nanoparticles presented a diameter in the range 40-100 nm. Colloidal hydrophobic films, allowing nonpolar molecule pre-concentration, were obtained. The surfaces exhibit strong enhancement of Raman scattering from molecules adsorbed on the films. Spectra were recorded for two PAHs, naphthalene and pyrene, in artificial sea-water (ASW) with limits of detection (LODs) of 10 ppb for both on MPMS silanized substrates.  相似文献   

10.
Surface-enhanced Raman scattering under near-IR excitation is investigated for p-aminothiophenol (PATP) molecules that are either adsorbed on an electrochemically roughened silver electrode or embedded in an Au/PATP/Ag molecular junction assembled on an indium-doped tin oxide electrode. The contribution from chemical enhancement can be amplified relative to the contribution from electromagnetic enhancement, because the energy of the near-IR excitation is far from the surface plasmon resonance of the nanosized metal particles. The energy required for the charge-transfer process for the Au/PATP/Ag molecular junction is much lower than that of the PATP molecules adsorbed on the electrochemically roughened silver electrode. Coadsorption of chloride ions on the metal nanoparticles may result in an alteration of the local Fermi level of the metal nanoparticles, thus leading to better energy matching between the energy level of the interconnecting PATP molecules and the Fermi level of the metal nanoparticles.  相似文献   

11.
利用巯基苯胺作耦联分子,成功地将Au纳米粒子组装到GaAs(100)表面上,并且用TM-AFM观察了纳米粒子在表面上的分布情况.Raman研究表明,该基底显示出表面增强喇曼散射活性.  相似文献   

12.
Raman scattering measurements were conducted for 4-aminobenzenethiol (4-ABT) assembled on powdered copper substrates. Initially, very weak Raman peaks were detected, but upon attaching Ag nanoparticles probably via NH2 groups onto 4-ABT/Cu, distinct Raman spectra were observed. Considering the fact that no Raman peak was identified when Ag nanoparticles were adsorbed on 4-aminophenyl-derivatized silane monolayers assembled on silica powders, the Raman spectra observed for Ag@4-ABT/Cu should be surface-enhanced Raman scattering (SERS) spectra, occurring by an electromagnetic coupling of the localized surface plasmon of Ag nanoparticles with the surface plasmon polariton of Cu powders. The extra enhancement factor attainable by the attachment of a single Ag nanoparticle is estimated to be as large as 1.4 x 10(5) in the case when 632.8-nm radiation is used as the excitation source. When Au nanoparticles were attached onto 4-ABT/Cu, at least an order of magnitude weaker Raman spectra were obtained at all excitation wavelengths, however, indicating that the Au-to-Cu coupling should be far less effective than the Ag-to-Cu coupling for the induction of SERS.  相似文献   

13.
赵乔  逯丹凤  陈晨  祁志美 《物理化学学报》2014,30(12):2335-2341
采用溶胶-凝胶分子模板法在50 nm厚金膜表面制备约40 nm厚介孔二氧化硅(MPS)薄膜,然后在MPS薄膜表面静电自组装金纳米粒子(GNP)单层膜,形成的多层膜结构用作表面增强拉曼散射(SERS)基底.利用扫描电镜观测到MPS薄膜具有表面开口多孔结构,有助于小分子向薄膜内快速扩散.基于时域有限差分(FDTD)方法对电场分布的仿真结果指出,在表面等离子体共振(SPR)条件下分布于金膜与GNP之间的消逝场显著增强.由于空间重叠,该增强场能够高效激发MPS内富集的小分子拉曼信号,产生的拉曼信号还可免受金属作用的干扰.利用Kretschmann结构和尼罗蓝(NB)拉曼活性分子测试了Au/MPS/GNP基底在785 nm激发波长下的SERS效果,并与Au/GNP基底进行了比较.结果表明,在SPR条件下,Au/MPS/GNP基底能够导致较强的定向和背向拉曼信号,而且在586 cm-1处的背向拉曼信号强度是Au/GNP基底的40倍,这归功于MPS薄膜.进一步测试表明背向拉曼信号强度与NB浓度成正相关.这意味着Au/MPS/GNP基底具有良好的半定量检测本领.  相似文献   

14.
Ligand-capped gold nanoparticles were synthesized by capping monothiol derivatives of 2,2'-dipyridyl onto the surface of Au nanoparticles (Au-BT). The average size of the metal core is around 4 nm, with a shell of approximately 340 bipyridine ligands around the Au nanoparticle. The high local concentration of the chelating ligands ( approximately 5 M) around the Au nanoparticle makes these particles excellent ion sponges, and their complexation with Eu(III)/Tb(III) ions yields phosphorescent nanomaterials. Absorption spectral studies confirm a 1:3 complexation between Eu(III)/Tb(III) ions and bipyridines, functionalized on the surface of Au nanoparticles. The red-emitting Au-BT:Eu(III) complex exhibits a long lifetime of 0.36 ms with six line-like emission peaks, whereas the green-emitting Au-BT:Tb(III) complex exhibits a lifetime of 0.7 ms with four line-like emission peaks. These phosphorescent nanomaterials, designed by linking BT:Eu(III) complexes to Au nanoparticles, were further utilized as sensors for metal cations. A dramatic decrease in the luminescence was observed upon addition of alkaline earth metal ions (Ca(2+), Mg(2+)) and transition metal ions (Cu(2+), Zn(2+), Ni(2+)), resulting from an isomorphous substitution of Eu(III) ions, whereas the luminescence intensity was not influenced by the addition of Na(+) and K(+) ions. Direct interaction of bipyridine-capped Au nanoparticles with Cu(2+) ions brings the nanohybrid systems closer, leading to the formation of three-dimensional superstructures. Strong interparticle plasmon interactions were observed in these closely spaced Au nanoparticles.  相似文献   

15.
To exploit a gap mode plasmon in flocculates of metal nanoparticles most efficiently, the interaction between adsorbed chemical species and metal nanostructures were adjusted. We successfully formed flocculates of Ag nanoparticles (AgNPs) using electrostatic interaction between dissociated p-mercaptobenzoic acid (PMBA), protonated p-aminothiophenol (PATP) and their counter ions (Mn+, Xm−), as well as van der Waals force between neutral PMBA, PATP and AgNPs. Detailed adsorbed state of PMBA and PATP in addition to trapped counter ions was characterized using enormous SERS enhancement in a flocculation method.  相似文献   

16.
以Au粒子(55nm)为核,抗坏血酸为还原剂,将不同量的Pt沉积在Au核上,制得可控壳层厚度(0.3~6nm)的Pt包Au纳米粒子(Aucore@Ptshell).用紫外-可见吸收光谱、扫描电镜(SEM)、透射电镜(TEM)和电化学循环伏安法等观测Aucore@Ptshell纳米粒子的表面形貌、结构和性能.另以SCN-为探针,考察了Pt壳厚度对Aucore@Ptshell纳米粒子SERS信号的影响.结果表明,SCN-离子的SERS信号强度随Pt壳厚度的增加呈指数衰减,当Pt壳厚度为1.4nm时,Aucore@Ptshel纳米粒子表现出铂良好的电化学性能,又具有较强的SERS活性.  相似文献   

17.
We have identified empirically a relationship between the surface morphology of small individual aggregates (<100 Au nanoparticles) and surface-enhanced Raman scattering (SERS) enhancement. We have found that multilayer aggregates generated greater SERS enhancement than aggregates limited to two-dimensional (2D) or one-dimensional structures, independent of the number of particles. SERS intensity was measured using the 730 cm(-1) vibrational mode of the adsorbed adenine molecule on 75 nm Au particles, at an excitation wavelength of 632.8 nm. To gain insight into these relationships and its mechanism, we developed a qualitative model that considers the collections of interacting Au nanoparticles of an individual aggregate as a continuous single entity that retains its salient features. We found the dimensions of the modeled surface features to be comparable with those found in rough metal surfaces, known to sustain surface plasmon resonance and generate strong SERS enhancement. Among the aggregates that we have characterized, a three 75 nm nanoparticle system was the smallest to generate strong SERS enhancement. However, we also identified single individual Au nanoparticles as SERS active at the same wavelength, but with a diameter twice in size. For example, we observed a symmetric SERS-active particle of 180 nm in diameter. Such individual nanoparticles generated SERS enhancement on the same order of magnitude as the small monolayer Au aggregates, an intensity value significantly stronger than predicted in recent theoretical studies. We also found that an aspect of our model that relates the dimensions of its features to SERS enhancement is also applicable to single individual Au particles. We conclude that the size of the nanoparticle itself, or the size of a protrusion of an irregularly shaped single Au particle, will contribute to SERS enhancement provided that its dimensions satisfy the conditions for plasmon resonance. In addition, by considering the ratio of the generated intensities of typical 2D Au aggregates to the enhancement of individual SERS-active particles, a value of approximately 2 is determined. Its moderate value suggests that it is not the aggregation effect that is responsible for much of the observed SERS enhancement but the surface region associated with the SERS-active site.  相似文献   

18.
采用振荡法和种子生长技术制备出核壳结构的Au@SiO2纳米颗粒及夹层结构的Au@SiO2@Ag纳米颗粒, 用HF将Au@SiO2@Ag NPs夹层的SiO2溶解, 得到内部带有粒径为30 nm的可移动金核、壳层厚度约为30 nm的中空银纳米颗粒(Au@air@Ag NPs). 用扫描电子显微镜和透射电子显微镜对所得到的纳米微球的形貌进行了表征, 并以罗丹明B为探针分子研究了Au@air@Ag 纳米颗粒的表面增强拉曼(SERS)效应, 发现Au@air@Ag 纳米颗粒是一种可应用于SERS的理想材料.  相似文献   

19.
在已制备好的Ag纳米粒子表面,通过化学还原的方法沉积生长Au包裹层,制备了粒子尺寸为50-70nm的Ag核Au壳复合纳米粒子.通过改变AuCl4-量,使Ag100-xAux中Au的含量由x=0变为x=30.用UV-Vis吸收光谱和透射电子显微镜(TEM)对该结构纳米粒子进行了表征,并以对巯基苯胺(PATP)为探针分子进行表面增强拉曼光谱(SERS)研究.表面拉曼光谱表明,该结构的纳米粒子具有比Ag更强的SERS活性,随着Au:Ag比例的逐渐增加,其活性呈现先增大后减小的趋势,其最大增强约为Ag纳米粒子的10倍.  相似文献   

20.
Tong L  Zhu T  Liu Z 《Chemical Society reviews》2011,40(3):1296-1304
Surface-enhanced Raman scattering (SERS) has been intensively explored both in theory and applications and has been widely used in chemistry, physics and biology for decades. A variety of SERS substrates have been developed in order to investigate the mechanisms behind, which give rise to the enormous enhancement even enabling single molecule detection. The Raman enhancement, which involves an electromagnetic enhancement (EM) and a chemical enhancement (CM), reflects both the physical principle of light/metal interactions and the molecule/metal interactions. In this tutorial review, we focus on the EM enhancement of SERS active substrates made of colloidal gold nanoparticles (GNPs), varying from self-assembled arrays down to single particles, for the purpose of investigating the EM coupling effect and probing the distribution of the induced electric field of single GNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号