首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
EPR spectroscopy was chosen to investigate the ligand exchange reactions between copper(II) bis(dithiocarbamate), Cu(dtc)2, and copper(II) salts which proceeds with the formation of mixed-ligand complexes of the type Cu(dtc)X, where X = Cl, NO3, ClO4. Large concentrations of 1:1 mixed-ligand complexes of this type are obtained as indicated by the EPR spectra of acetone, CHCl3/EtOH, CHCl3/i-PrOH, CCl4/EtOH and CCl4/i-PrOH, solutions of Cu(dtc)2 and the appropriate copper(II) salt CuCl2, Cu(NO3)2 or Cu(ClO4)2. Double integration of Cu(dtc)2 EPR signals obtained at temperatures between 240 and 310 K affords the calculation of the equilibrium constant (K) of the reaction: Cu(dtc)2 + CuX2 <==> 2 Cu(dtc)X in all solvents as a function of T. From the values of K the stability constant beta of the mixed-ligand complexes has been derived. The error associated with the calculated stability constant is +/- 10%. Thermodynamic parameters (deltaH0, deltaG0 and deltaS0) are determined from the temperature dependence of K as measured by EPR spectroscopy.  相似文献   

2.
Wei L  Babich JW  Zubieta J 《Inorganic chemistry》2004,43(20):6445-6454
The reactions of 1 or 2 equiv of N-methyl-o-diaminobenzene with trans-[ReOX(3)(PPh(3))(2)] (X = Cl, Br) in refluxing chloroform gave oxo-free rhenium complexes [Re(VI)X(4)(NC(6)H(4)NHCH(3))(OPPh(3))] (X = Cl, 3; X = Br, 6), [Re(V)X(2)Y(NC(6)H(4)NHCH(3))(PPh(3))(2)] (X, Y = Cl, 4; X = Br, Y = Cl, 7), [Re(IV)Cl(2)(NHC(6)H(4)NCH(3))(2)] (5), and [Re(IV)Br(3)(NHC(6)H(4)NCH(3))(PPh(3))] (8). All complexes were characterized by elemental analysis, (1)H NMR and IR spectroscopy, cyclic voltammetry, EPR spectroscopy, and X-ray crystallography. The complexes all display distorted octahedral coordination geometry. For Re(IV) complexes 5 and 8, the ligands coordinate in the benzosemiquinone diimine form. In Re(VI) complexes 3 and 6 and the Re(V) complexes 4 and 7, the ligands coordinate in the dianionic monodentate imido form. The EPR spectra of Re(VI) species 3 and 6 in dichloromethane solution at room temperature exhibit the characteristic hyperfine pattern of six lines, with evidence of strong second-order effects. The IR spectra of the complexes are characterized by Re=N and Re-N stretching bands at ca. 1090 and 540 cm(-)(1), respectively. The Re(IV) and Re(V) complexes display well-resolved NMR spectra, while the Re(VI) complexes exhibit no observable spectra, due to paramagnetism. The cyclic voltammograms of complexes 3 and 6 display Re(VII)/ Re(VI) and Re(VI)/Re(V) processes, those of 4 and 7 exhibit Re(VI)/Re(V) and Re(V)/Re(IV) couples, and those of 5 and 8 are characterized by Re(V)/Re(IV) and Re(IV)/Re(III) processes.  相似文献   

3.
An original electrochemical synthesis of {[Rh4(mu-OOCCH3)4(phen)4]2+}n (1) molecular wire films from a solution of binuclear bridged Rh complexes [Rh2(mu-OOCCH3)2(phen)2(X)2](Y)2 (X = H2O, Y = BF4(-) (2a) and X = CH3CN, Y = BF4(-) (2b)) in MeCN electrolyte is reported. UV-vis spectroscopy and quartz crystal microbalance electrochemical coupled techniques have been used to demonstrate the electrosynthesis process. The resulting polymetallic compound has been characterized on the basis of its physicochemical properties, which have been compared with those of a chemically synthesized sample. Furthermore, according to EPR, 1H NMR and electrochemical behaviour, the mechanism of the oxidation of this polymetallic wire, containing mixed valent rhodium centers and alternatively acetate bridged Rh-Rh bonds, has been investigated in detail.  相似文献   

4.
The synthesis, molecular structures, and spectroscopic properties of a series of valence-delocalized diiron(II,III) complexes are described. One-electron oxidation of diiron(II) tetracarboxylate complexes afforded the compounds [Fe(2)(mu-O(2)CAr(Tol))(4)L(2)]X, where L = 4-(t)BuC(5)H(4)N (1b), C(5)H(5)N (2b), and THF (3b); X = PF(6)(-) (1b and 3b) and OTf(-) (2b). In 1b-3b, four mu-1,3 carboxylate ligands span relatively short Fe...Fe distances of 2.6633(11)-2.713(3) A. Intense (epsilon = 2700-3200 M(-1) cm(-1)) intervalence charge transfer bands were observed at 620-670 nm. EPR spectroscopy confirmed the S = (9)/(2) ground spin state of 1b-3b, the valence-delocalized nature of which was probed by X-ray absorption spectroscopy. The electron delocalization between paramagnetic metal centers is described by double exchange, which, for the first time, is observed in diiron clusters having no single-atom bridging ligand(s).  相似文献   

5.
The complexes of Cr(III), Mn(II) and Ni(II) were synthesized with macrocyclic ligand i.e. 5,11-dimethyl-6,12-diethyl-dione-1,2,4,7,9,10-hexazacyclododeca -1,4,6,10-tetraene. The ligand (L) was prepared by [2+2] condensation reaction of 2,3-pentanedione and semicarbazide hydrochloride. These complexes were found to have the general composition [Cr(L)X(2)]X and [M(L)X(2)] (where M=Mn(II) and Ni(II); X=Cl(-), NO(3)(-), (1/2)SO(4)(2-), NCS(-) and L=ligand [N(6)]). The ligand and its transition metal complexes were characterized by the elemental analysis, molar conductance, magnetic susceptibility, mass, IR, electronic and EPR spectral studies. On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for these complexes except sulphato complexes which are of five coordinated geometry.  相似文献   

6.
The initial steps of an enantioselective Diels-Alder reaction catalyzed by a CuII-bissulfoximine complex were followed by EXAFS (EXAFS=extended X-ray absorption fine structure), EPR (EPR=electron paramagnetic resonance) spectroscopy (CW-EPR, FID-detected EPR, pulse ENDOR, HYSCORE; CW=continuous wave; ENDOR=electron nuclear double resonance; HYSCORE=hyperfine sublevel correlation; FID=free induction decay), and UV-visible spectroscopy. The complexes formed between the parent CuX2 (X=Cl-, Br-, TfO-, SbF6-) salts, the chiral bissulfoximine ligand (S,S)-1, and N-(1-oxoprop-2-en-1-yl)oxazolidin-2-one (2) as the substrate in CH2Cl2 were investigated in frozen and fluid solution. In all cases, penta- or hexacoordinated CuII centers were established. The complexes with counterions indicating high stereoselectivity (TfO- and SbF6-) reveal one unique species in which substrate 2 binds to pseudoequatorial positions (via O atoms), shifting the counterions to axial locations. On the other hand, those lacking stereoselectivity (X=Cl- and Br-) form two species in which the parent halogen anions remain at equatorial positions preventing the formation of geometries compatible with those found for X=TfO- and SbF6-.  相似文献   

7.
The composition of the co-ordination sphere of Cu(II) dithiocarbamate mixed-ligand complexes Cu(Et2)dtc)X (X = Cl-, Br-) and Cu(Et2)dtc)(+)...Y- (Y- = ClO4-, NO3-) is studied from the combined analysis of spectrophotometric and EPR data. The results obtained about CT-photolysis of the complexes in EtOH and i-PrOH are compared with our previous data of photolysis in chloromethane/ROH solutions. Reaction mechanism and the role of alcohol are discussed on the ground of electronic and EPR spectra and quantum yield results.  相似文献   

8.
The complexes of Cr(III), Mn(II), Fe(III) and Cu(II) were synthesized with the macrocyclic ligand i.e. 2,3,9,10-tetraketo-1,4,8,11-tetraazacyclotetradecane. The ligand was prepared by the [2 + 2] condensation reaction of diethyloxalate and 1,3-diamino propane. These complexes were found to have the general composition M(L)X3 and M'(L)X2 [where M = Mn(II) and Cu(II), M' = Cr(III) and Fe(III), L = ligand (N4) and X = Cl-, NO3-, 1/2SO4(2-) and [CH3COO-]. The ligand and its transition metal complexes were characterized by the elemental analyses, molar conductance, magnetic susceptibility, mass, IR, electronic, and EPR spectral studies. On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Cr(III), Mn(II) and Fe(III) and a tetragonal geometry for Cu(II) complexes.  相似文献   

9.
Ligating properties of four potentially tridentate bisphenol ligands containing [O, X, O] donor atoms (X = S 1, Se 2, P 3, or P=O 4) toward the vanadium ions in +IV or +V oxidation states have been studied. Each ligand with different heterodonor atoms yields as expected nonoxovanadium(IV) complexes, V(IV)L(2), whose structures have been determined by X-ray diffraction methods as having six-coordinate V(IV), VO(4)X(2), core. Compounds 1-4 have also been studied with electrochemical methods, variable-temperature (2-295 K) magnetic susceptibility measurements, X-band electron paramagnetic resonance (EPR) (2-60 K) spectroscopy, and magnetic circular dichroism (MCD) (5 K) measurements. Electrochemical results suggest metal-centered oxidations to V(V) (i.e., no formation of phenoxyl radicals from the coordinated phenolates). A combination of density functional theory calculations and experimental EPR investigations indicates a dramatic effect of the heteroatoms on the electronic structure of 1-4 with consequent reordering of the energy levels; 1 and 3 possess a trigonal ground state (d(z)()(2))(1), but 4 with the phosphoryl oxygen as the heterodonor atom in contrast exhibits a tetragonal ground state, (d(xy)())(1). On the basis of the intense electronic transitions in absorption spectra, all electronic transitions observed for 4 have been assigned to ligand-to-metal charge-transfer transitions, which have been confirmed by preliminary resonance Raman measurements and C/D ratios obtained from low-temperature MCD spectroscopy. Moreover, diamagnetic complexes 5 and 6 containing mononuclear and dinuclear oxovanadium(V) units have also been synthesized and structurally and spectroscopically ((51)V NMR) characterized.  相似文献   

10.
The isolation, structural characterization, and electronic properties of a series of high-spin mononuclear five-coordinated Mn(II) complexes, [Mn(terpy)(X)(2)] (terpy = 2, 2':6',2' '-terpyridine; X = I(-) (1), Br(-) (2), Cl(-) (3), or SCN(-) (4)), are reported. The X-ray structures of the complexes reveal that the manganese ion lies in the center of a distorted trigonal bipyramid for complexes 1, 2, and 4, while complex 3 is better described as a distorted square pyramid. The electronic properties of 1-4 were investigated by high-field and high-frequency EPR spectroscopy (HF-EPR) performed between 5 and 30 K. The powder HF-EPR spectra have been recorded in high-field-limit conditions (95-285 GHz) (D < gbetaB). The spectra are thus simplified, allowing an easy interpretation of the experimental data and an accurate determination of the spin Hamiltonian parameters. The magnitude of D varies between 0.26 and 1.00 cm(-)(1) with the nature of the anionic ligand. Thanks to low-temperature EPR experiments, the sign of D was unambiguously determined. D is positive for the iodo and bromo complexes and negative for the chloro and thiocyano ones. A structural correlation is proposed. Each complex is characterized by a significant rhombicity with E/D values between 0.17 and 0.29, reflecting the distorted geometry observed around the manganese. Finally, we compared the spin Hamiltonian parameters of our five-coordinated complexes and those previously reported for other analogous series of dihalo four- and six-coordinated complexes. The effect of the coordination number and of the geometry of the Mn(II) complexes on the spin Hamiltonian parameters is discussed.  相似文献   

11.
12.
The well-known monoanionic Cr tris(3,5-di-tert-butylcatecholato) complex, [Cr(DTBC)3]-, has been studied by X-ray absorption spectroscopy. The multiple-scattering fit to the XAFS gave good correlation (R = 19.8%) and good values for all of the bond lengths, angles, and Debye-Waller factors. The principal bond lengths and angles around the metal center (Cr-O, 1.96 A; O-C, 1.28 A; O-Cr-O, 81.8 degrees; Cr-O-C, 113.3 degrees) were most consistent with the XRD structure for [Cr(X4C6O2)3]- (X = Cl, Br), compared to those in other oxidation states, [Cr(DTBC)3], [Cr(Cl4C6O2)3], and [Cr(O2C6H4)3]3-. The XANES spectrum shows the main K edge at 6003.3 eV and a preedge peak at 5992.9 eV, which is approximately 8% of the intensity of the main K edge. The XANES data were compared to those for Cr-ehba complexes (ehbaH2 = 2-ethyl-2-hydroxybutanoic acid) of known oxidation states (III, IV, and V) and show, in conjunction with EPR spectroscopy and a reevaluation of XRD structures and theoretical calulations, that the complex is best described as a Cr(V) center with delocalization from the catechol ligands. The [Cr(catecholato)3]n+ (n = 1, 0) complexes have similar EPR spectroscopic and structural properties, respectively, to the 1- complex and are also best described as Cr(V) complexes. Such intermediates are important in the redox reactions of catechol(amine)s, and oxidized amino acids (e.g., DOPA), with carcinogenic Cr(VI) and may have relevance in Cr-induced cancers.  相似文献   

13.
Cobalt(II) complexes of reduced glutathione (GSH) of general composition Na[Co(L)(X)].nH2O (where H2L = GSH; X = Cl-, NO3-, NCS-, CH3CO2-, HCO2-, ClO4- and n = 0-4) have been synthesized and characterised by elemental analyses, vibrational spectra, electronic spectra, magnetic susceptibility measurements, thermal studies and molecular modeling studies. Electronic spectra indicate planar geometry for all the complexes. Infrared spectra indicate the presence of H2O molecules (except perchlorate complex) in the complexes that has been supported by TG/DTA. The room temperature magnetic moment values for all complexes lie in the range of 2.60-2.80 BM range indicating departure from spin only values due to second order Zeeman effect. Thermal decomposition of all the complexes proceeds via first order kinetics. The Na[Co(L)(Cl)].2H2O complex has the minimum activation energy and Na[Co(L)(CH3CO2)].3H2O has the maximum activation energy. The molecular modeling calculation for energy minimization optimizes geometry of the metal complexes.  相似文献   

14.
Magnetic susceptibility and EPR studies show that trinuclear Cu(II)-pyrazolato complexes with a Cu(3)(mu3-X)2 core (X = Cl, Br) are ferromagnetically coupled: J(Cu-Cu) = +28.6 cm(-1) (X = Cl), +3.1 cm(-1) (X = Br). The orderly transition from an antiferromagnetic to a ferromagnetic exchange among the Cu centers of Cu(3)(mu3-X) complexes, X = O, OH, Cl, Br, follows the change of the Cu-X-Cu angle from 120 degrees to approximately 80 degrees. The crystal structures of [Bu4N]2"[Cu3(mu3-Br)2(mu-pz*)3Br3] (pz* = pz (1a) or 4-O2N-pz (1b), pz = pyrazolato anion, C(3)H(3)N(2)(1-)) are presented.  相似文献   

15.
Molecular structures of 12 porphyrin analogues, Fe(III)(EtioP)X(1(a)-1(d)), Fe(III)(EtioCn)X(2(a)-2(d)), and Fe(III)(Etio-Pc)X(3(a)-3(d)), where X = F (a), Cl (b), Br (c), and I (d), are determined on the basis of X-ray crystallography. Combined analyses using M?ssbauer, (1)H NMR, and EPR spectroscopy as well as SQUID magnetometry have revealed that 3(d) exhibits a quite pure S = 3/2 spin state with a small amount of an S = 5/2 spin admixture. In contrast, all the other complexes show the S = 5/2 spin state with a small amount of the S = 3/2 spin admixture. The structural and spectroscopic data indicate a strong correlation between the spin states of the complexes and the core geometries such as Fe-N bond lengths, cavity areas, and DeltaFe values.  相似文献   

16.
Copper(II) complexes of isatin-3,2'-quinolyl-hydrazones of the type [Cu(L)X] (where X=Cl(-), Br(-), NO(3)(-), CH(3)COO(-) and ClO(4)(-)] and their adducts Cu(L)X.2Y [where Y=pyridine or dioxane and X=Cl(-), Br(-), NO(3)(-) and ClO(4)(-)] have been synthesized under controlled experimental conditions and characterized by using the modern spectroscopic and physicochemical techniques viz. IR, electronic, EPR, elemental analysis, magnetic moment susceptibility measurements and molar conductance, etc. On the basis of spectral studies a four coordinated square planer geometry is assigned for Cu(L)X type complexes whereas the adducts (Cu(L)X.2Y were found to have a six coordinated octahedral geometry.  相似文献   

17.
Manganese(II) complexes having the general composition Mn(L)2X2 [where L=isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC) and 4-aminoacetophenone thiosemicarbazone (LLD) and X=Cl-, 1/2SO(4)2-] have been synthesized. All the complexes were characterized by elemental analyses, molar conductance, magnetic moment susceptibility, EI-mass, 1H NMR, IR, EPR and electronic spectral studies. All the complexes show magnetic moments corresponding to five unpaired electrons. The possible geometries of the complexes were assigned on the basis of EPR, electronic and infrared spectral studies.  相似文献   

18.
Copper(II) complexes having the general composition Cu(L)(2)X(2) [where L = isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC), and 4-aminoacetophenone thiosemicarbazone (LLD) and X = Cl(-), 1/2SO(4)(2-)] have been synthesized. All the Cu(II) complexes reported here have been characterized by elemental analyses, molar conductance, magnetic moment susceptibility, EI mass, (1)H NMR, IR, EPR, and electronic spectral studies. All the complexes were found to have magnetic moments corresponding to one unpaired electrons. The possible geometries of the complexes were assigned on the basis of EPR, electronic, and infrared spectral studies.  相似文献   

19.
Mn(II), Co(II) and Ni(II) complexes of 2-methylcyclohexanone thiosemicarbazone(MCHTSC L(1)) and 2-methylcyclohexanone-(4)N-methyl-3-thiosemicarbazone (MCHMTSC L(2)), general composition [M(L)(2)X(2)] (where M = Mn(II), Co(II), Ni(II), L = L(1) or L(2) and X = Cl(-), NO(3)(-), and [(1/2)SO(4)(2-)) have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, UV-vis, IR, EPR, and mass spectral studies. Various physico-chemical techniques suggest an octahedral geometry for all the complexes.  相似文献   

20.
Charge-transfer (CT)-photolysis of Cu(II) dithiocarbamate mixed-ligand complexes Cu(II)(Et2dtc)X (X = Cl-, Br-) and Cu(II)(Et2dtc)(+)...Y- (Y = ClO4-, NO3-) has been studied in toluene/ROH and compared with our previous data obtained in chloromethane/ROH solutions, where chloromethane = CCl4, CHCl3 or CH2Cl2 and ROH = MeOH, EtOH, i-PrOH or i-BuOH. An EPR evidence is obtained about the formation of a new copper(II) dithiocarbamate mixed-ligand complex during simultaneous photolyses of Cu(II)(Et2dtc)+ and Cu(II)(Et2dtc)2 species in toluene/ROH. The role of the solvent is discussed from the combined analysis of spectrophotometric and EPR data and quantum yield results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号