首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a particle size dependence for the rate of hydrogenation of allyl alcohol using 1.3-1.9 nm Pd dendrimer-encapsulated nanoparticle (DEN) catalysts. For particles with diameters of <1.5 nm and containing <147 Pd atoms, the modulation in catalytic activity is due to the electronic properties of the particle. For the larger particles, 1.5-1.9 nm in diameter and containing an average of 147-250 Pd atoms, the size effect is a result of geometrical constraints. Specifically, the hydrogenation reaction is shown to occur preferentially on the face atoms of the larger nanoparticles.  相似文献   

2.
The electrocatalytic properties of small platinum nanoparticles were investigated for the oxidation of CO, methanol, and formic acid using voltammetry, chronoamperometry, and surface-enhanced Raman spectroscopy. The particles were generated by galvanostatic deposition of platinum on a polished gold surface from an H2PtCl6 containing electrolyte and ranged between 10 and 20 nm in diameter for low platinum surface concentrations, 10 and 120 nm for medium concentrations, and full Pt monolayers for high concentrations. CO stripping and bulk CO oxidation experiments on the particles up to 120 nm in diameter displayed pronounced structural effects. The CO oxidation current-time transients show a current decay for low platinum coverages and a current maximum for medium and high coverages. These results were also observed in the literature for particles of 2- to 5-nm size and agglomerates of these particles. The similarities between the literature and our results, despite large differences in particle size and morphology, suggest that particle structure and morphology are also very important catalytic parameters. Surface-enhanced Raman spectroscopy data obtained for the oxidation of CO on the Pt-modified Au electrodes corroborate this conclusion. A difference in the ratio between CO adsorbed in linear- and bridge-bonded positions on the Pt nanoparticles of different sizes demonstrates the influence of the surface morphology. The oxidation activity of methanol was found to decrease with the particle size, while the formic acid oxidation rate increases. Again, a structural effect is observed for particles of up to ca. 120 nm in diameter, which is much larger than the particles for which a particle size effect was reported in the literature. The particle shape effect for the methanol oxidation reaction can be explained by a reduction in available “ensemble sites” and a reduction in the mobility of CO formed by decomposition of methanol. As formic acid does not require Pt ensemble sites, decreasing the particle size, and thus, the relative number of defects, increases the reaction rate. Dedicated to Prof. Dr. Teresa Iwasita on the occasion of her 65th birthday in recognition of her numerous contributions to interfacial electrochemistry.  相似文献   

3.
Different size platinum nanoparticles, ranging in size from 1.8-14.1 nm, were prepared by multi-step reduction of H2PtCl6 by hydrogen adsorbed on platinum atoms. Transmission electronic microscopy and X-ray diffraction were used to characterize the nanoparticles. After thirty-two iterations of the reaction, the diameter of platinum nanoparticles increased from 1.8 nm to 14.1 nm. The average iterative increase was approximately 0.4 nm. The size distribution of the nanoparticles was narrow. Synthesis procedures which allow for control of platinum nanoparticle size offer the possibility for the further research into how the sizes of nano-catalysts effect catalytic activity.  相似文献   

4.
碱-乙二醇法制备的"非保护型"金属及合金纳米簇由表面吸附的溶剂分子和简单离子实现稳定化,它们被广泛用于制备高性能复相催化剂和研究复相催化剂中的尺寸、组成、载体表面基团以及修饰剂对催化性能的影响。关于此类非保护金属纳米簇的形成过程及机理的认识尚有待进一步深化。本文采用原位快速扫描X射线吸收精细结构谱(QXAFS)、原位紫外-可见(UV-Vis)吸收光谱、透射电子显微镜和动态光散射技术研究了碱-乙二醇法合成中非保护型金属胶体纳米簇的形成过程与机理。结果表明,在碱-乙二醇法合成非保护型Pt金属纳米簇的过程中,室温下即有部分Pt(IV)被还原至Pt(II)。随着反应温度的升高,OH-逐渐取代与Pt离子配位的Cl-,在Pt―Pt键形成之前,反应体系的UV-Vis吸收光谱中可观察到明显的纳米粒子的散射信号,原位QXAFS分析表明Pt纳米簇是由Pt氧化物纳米粒子还原所形成的;在Ru金属纳米簇的形成过程中,OH-首先取代了Ru Cl_3中的Cl~-,形成羟基配合物Ru(OH) _6~(3-),后者进一步缩合形成氧化钌纳米粒子,最终Ru金属纳米簇由乙二醇还原氧化钌纳米粒子形成。由于先形成了氧化物纳米粒子,后续的还原反应被限制在氧化物纳米粒子内,使最终得到的非保护型金属纳米簇具有尺寸小、分布窄的特点。本工作所获得的知识对发展高性能能源转化催化剂、精细化学合成催化剂、传感器等功能体系具有重要意义。  相似文献   

5.
We report a combined X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and chronoamperometry (CA) study of formic acid electrooxidation on unsupported palladium nanoparticle catalysts in the particle size range from 9 to 40 nm. The CV and CA measurements show that the most active catalyst is made of the smallest (9 and 11 nm) Pd nanoparticles. Besides the high reactivity, XPS data show that such nanoparticles display the highest core-level binding energy (BE) shift and the highest valence band (VB) center downshift with respect to the Fermi level. We believe therefore that we found a correlation between formic acid oxidation current and BE and VB center shifts, which, in turn, can directly be related to the electronic structure of palladium nanoparticles of different particle sizes. Clearly, such a trend using unsupported catalysts has never been reported. According to the density functional theory of heterogeneous catalysis, and mechanistic considerations, the observed shifts are caused by a weakening of the bond strength of the COOH intermediate adsorption on the catalyst surface. This, in turn, results in the increase in the formic acid oxidation rate to CO2 (and in the associated oxidation current). Overall, our measurements demonstrate the particle size effect on the electronic properties of palladium that yields different catalytic activity in the HCOOH oxidation reaction. Our work highlights the significance of the core-level binding energy and center of the d-band shifts in electrocatalysis and underlines the value of the theory that connects the center of the d-band shifts to catalytic reactivity.  相似文献   

6.
Oxygen reduction reaction (ORR) measurements and (195)Pt electrochemical nuclear magnetic resonance (EC-NMR) spectroscopy were combined to study a series of carbon-supported platinum nanoparticle electrocatalysts (Pt/CB) with average diameters in the range of roughly 1-5 nm. ORR rate constants and H(2)O(2) yields evaluated from hydrodynamic voltammograms did not show any particle size dependency. The apparent activation energy of 37 kJ mol(-1), obtained for the ORR rate constant, was identical to that obtained for bulk platinum electrodes. Pt/CB catalysts on Nafion produced only 0.7-1% of H(2)O(2), confirming that the direct four-electron reduction of O(2) to H(2)O is the predominant reaction. NMR spectral features showed characteristic size dependence, and the line shapes were reproduced by using the layer-deconvolution model. Namely, the variations in the NMR spectra with particle size can be explained as due to the combined effect of the layer-by-layer variation of the s-type and d-type local density of states. However, the surface peak position of (195)Pt NMR spectra and the spin-lattice relaxation time of surface platinum atoms showed practically no change with the particle size variation. We conclude that there is a negligible difference in the surface electronic properties of these Pt/CB catalysts due to size variations and therefore, the ORR activities are not affected by the differences in the particle size.  相似文献   

7.
Catalytic properties of polymer-stabilized colloidal metal nanoparticles synthesized by microwave irradiation were studied in the selective hydrogenation of unsaturated aldehydes, o-chloronitrobenzene and the hydrogenation of alkenes. The results show that nanosized metal particles synthesized by microwave irradiation have similar catalytic performance in selective hydrogenation of unsaturated aldehydes, better selectivity to o-chloroaniline in hydrogenation of o-chloronitrobenzene and higher catalytic activities in hydrogenation of alkenes, compared with metal clusters prepared by conventional heating. The same apparent activation energy (Ea = 29 kJ mol^-1) for hydrogenation of 1-heptene catalyzed with platinum nanoparticles prepared by both heating modes implied that the reaction followed the same mechanism.  相似文献   

8.
A novel high surface area heterogeneous catalyst based on solution phase colloidal nanoparticle chemistry has been developed. Monodisperse platinum nanoparticles of 1.7-7.1 nm have been synthesized by alcohol reduction methods and incorporated into mesoporous SBA-15 silica during hydrothermal synthesis. Characterization of the Pt/SBA-15 catalysts suggests that Pt particles are located within the surfactant micelles during silica formation leading to their dispersion throughout the silica structure. After removal of the templating polymer from the nanoparticle surface, Pt particle sizes were determined from monolayer gas adsorption measurements. Infrared studies of CO adsorption revealed that CO exclusively adsorbs to atop sites and red-shifts as the particle size decreases suggesting surface roughness increases with decreasing particle size. Ethylene hydrogenation rates were invariant with particle size and consistent with a clean Pt surface. Ethane hydrogenolysis displayed significant structure sensitivity over the size range of 1-7 nm, while the apparent activation energy increased linearly up to a Pt particle size of approximately 4 nm and then remained constant. The observed rate dependence with particle size is attributed to a higher reactivity of coordinatively unsaturated surface atoms in small particles compared to low-index surface atoms prevalent in large particles. The most reactive of these unsaturated surface atoms are responsible for ethane decomposition to surface carbon. The ability to design catalytic structures with tunable properties by rational synthetic methods is a major advance in the field of catalyst synthesis and for the development of accurate structure-function relationships in heterogeneous reaction kinetics.  相似文献   

9.
Co/γ-Al(2)O(3) catalysts with particle sizes in the range of 4-15 nm were investigated by isothermal hydrogenation (IH), temperature programmed hydrogenation (TPH), and steady-state isotopic transient kinetic analysis (SSITKA). Kinetic isotope effect experiments were used to probe possible mechanisms on Co/γ-Al(2)O(3) with different particle size. It was found that CO dissociated on Co/γ-Al(2)O(3) catalysts at 210 °C. The total amount of CO(2) formed following the dissociation depends on the cobalt crystal size. O-Co binding energy was found to be highly dependent on the Co metal particle size, whereas similar C-Co binding energy was found on catalysts with different Co particle size. Very strongly bonded carbon and oxygen surface species increased with decreasing particle size and acted as site blocking species in the methanation reaction. SSITKA experiments showed that the intrinsic activity (1/τ(CH(x))) remained constant as the particle size increased from 4 to 15 nm. The number of surface intermediates (N(CH(x))) increased with increasing particle size. The apparent activation energies were found similar for these catalysts, about 85 kJ/mol. D(2)-H(2) switches further confirmed that the particle size did not change the kinetically relevant steps in the reaction. The reactivity of the active sites on the 4 nm particles was the same as those on the 8, 11, and 15 nm particles, and only the number of total available surface active sites was less on the 4 nm particles than on the others.  相似文献   

10.
The specific activity of 0.8% Pt/Al2O3 catalysts in the deep oxidation of C1–C6 n-alkanes increases with an increase in the Pt particle size from 1 to 3–4 nm. Further coarsening of the particles insignificantly changes the specific activity. The size effect was studied for a series of catalysts containing platinum nanoparticles 1 to 11 nm in diameter. The specific catalytic activity variation range depends on the size of the reacting hydrocarbon molecules. As the platinum particle size increases, the specific catalytic activity increases 3–4 times for the oxidation of CH4 and C2H6 and by a factor of 20–30 for the oxidation of n-C4H10 and n-C6H14.  相似文献   

11.
Platinum nanoparticles supported on boron-doped single-crystalline diamond surfaces were used as a model system to investigate the catalytic activity with respect to the influence of particle morphology, particle density and surface preparation of the diamond substrates. We report on the preparation, characterization and activity regarding hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) of these Pt/diamond electrodes. Two kinds of diamond layers with boron doping above 10(20) cm(-3) were grown epitaxially on (100)-oriented diamond substrates; post-treatments of wet chemical oxidation and radio frequency (rf) oxygen plasma treatments were applied. Electrochemical deposition of Pt was performed using a potentiostatic double-pulse technique, which allowed variation of the particle size in the range between 1 nm and 15 nm in height and 5 nm and 50 nm in apparent radius, while keeping the particle density constant. Higher nucleation densities on the plasma processed surface at equal deposition parameters could be related to the plasma-induced surface defects. Electrochemical characterization shows that the platinum particles act as nanoelectrodes and form an ohmic contact with the diamond substrate. The catalytic activity regarding HER and HOR of the platinum nanoparticles exhibits no dependence on the particle size down to particle heights of ~1 nm. The prepared Pt on diamond(100) samples show a similar platinum-specific activity as bulk platinum. Therefore, while keeping the activity constant, the well-dispersed particles on diamond offer an optimized surface-to-material ratio.  相似文献   

12.
We have studied platinum catalysts supported on silicon nitride Si3N4 in the process of deep oxidation of methane. We have used transmission electron microscopy and X-ray photoelectron spectroscopy to study the surface properties of the Pt/Si3N4 samples before and after the catalytic reaction. We have established that the metallic platinum particles in freshly prepared systems are characterized by average sizes of 1.7-5.3 nm, while after the catalytic reaction we observe formation of Pt crystallites up to 30-70 nm in size. We hypothesize that the observed deactivation of platinum catalysts in deep oxidation of methane is connected with crystallization of the metallic particles and their entrainment with the reaction products during catalysis.  相似文献   

13.
Cobalt-based catalysts are well-known to convert syngas into a variety of Fischer–Tropsch (FTS) products depending on the various reaction parameters, in particular particle size. In contrast, the reactivity of these particles has been much less investigated in the context of CO2 hydrogenation. In that context, Surface organometallic chemistry (SOMC) was employed to synthesize highly dispersed cobalt nanoparticles (Co-NPs) with particle sizes ranging from 1.6 to 3.0 nm. These SOMC-derived Co-NPs display significantly different catalytic performances under CO2 hydrogenation conditions: while the smallest cobalt nanoparticles (1.6 nm) catalyze mainly the reverse water-gas shift (rWGS) reaction, the larger nanoparticles (2.1–3.0 nm) favor the expected methanation activity. Operando X-ray absorption spectroscopy shows that the smaller cobalt particles are fully oxidized under CO2 hydrogenation conditions, while the larger ones remain mostly metallic, paralleling the observed difference of catalytic performances. This fundamental shift of selectivity, away from methanation to reverse water-gas shift for the smaller nanoparticles is noteworthy and correlates with the formation of CoO under CO2 hydrogenation conditions.  相似文献   

14.
王睿卿  隋升 《电化学》2021,27(6):595
采用CCS法(catalyst coated substrate)构建铂纳米颗粒(Pt-NPs)和铂纳米线(Pt-NWs)双层催化层结构,分析其对单电池电化学性能的影响。对于富铂/贫铂双层铂纳米颗粒结构,靠近质子交换膜侧的富铂层中致密的铂颗粒结构能促进ORR速率,而靠近气体扩散层一侧的具有更高的孔隙率和平均孔尺寸的贫铂层,有利于反应气体的传输和扩散,当贫富铂层铂载量比为1:2时,单电池测试表现出最优性能,在0.6 V时的电流密度达到了1.05 A·cm-2,峰值功率密度为0.69 W·cm-2,较常规单层催化层结构提升了21%。在以Pt-NPs作为基底层时生长Pt-NWs时,得到了梯度分布的双层结构。铂颗粒的存在促进了铂前驱体的还原,并为新形成的铂原子提供了沉积位置。在Pt-NPs基底上生长的Pt-NWs具有更均匀的分布以及更致密的绒毛结构,并且自然形成了一种梯度分布。优化后的Pt-NWs催化层在0.6 V时的电流密度提高了21%。含有双层催化层结构的膜电极具有更高的催化剂利用率,对阴极催化层结构的优化和制备提供了新思路。  相似文献   

15.
在甲醇溶剂中,利用SnCl2作为还原剂,通过控制反应条件制备了带有不同粒径Pt粒子Pt/C催化剂。X-射线衍射和透射电镜的研究表明获得的Pt/C催化剂中Pt粒子具有高度的均一性和良好的分散度。电化学研究显示,对于氧气的电催化还原,Pt/C催化剂存在着明显的粒径效应。当Pt粒子粒径为3.2 nm时,Pt/C催化剂对氧气的电催化还原的质量比活性最佳。Pt/C催化剂对氧气的粒径效应可能与其表面含氧基团含量、Pt粒子的比表面积及其晶面结构相关。  相似文献   

16.
A two-step method has been developed for precise size and composition control of bimetallic Pt-In nanoparticles. Very small (1.62 nm) PtIn seed nanoparticles with 1:1 metal ratio were prepared in the absence of capping agents followed by growth of Pt on their surface in the presence of oleyl amine as reducing and stabilizing agent. Nanoparticles with bulk compositions of Pt(4)In, Pt(3)In, and Pt(2)In could be synthesized with average diameter smaller than 3 nm. TEM, EDX, and XPS provided evidence for homogeneous growth without separate nucleation of pure platinum nanoparticles in the reaction solution. Pt(3)In nanoparticles were deposited onto SiO(2) surface by incipient wetness impregnation. Temperature-induced changes in the particle surface were monitored by in situ IR spectroscopy and CO adsorption. It was found that surface alloy composition of the particles could be tuned by using oxidizing or reducing atmospheres.  相似文献   

17.
在甲醇溶剂中,利用SnCl2作为还原剂,通过控制反应条件制备了带有不同粒径Pt粒子Pt/C催化剂。X-射线衍射和透射电镜的研究表明获得的Pt/C催化剂中Pt粒子具有高度的均一性和良好的分散度。电化学研究显示,对于氧气的电催化还原,Pt/C催化剂存在着明显的粒径效应。当Pt粒子粒径为3.2nm时,Pt/C催化剂对氧气的电催化还原的质量比活性最佳。Pt/C催化剂对氧气的粒径效应可能与其表面含氧基团含量、Pt粒子的比表面积及其晶面结构相关。  相似文献   

18.
Mixtures of nanosized platinum and palladium particles have been prepared by reduction of salt-containing microemulsion droplets using hydrazine as the reducing agent. To avoid possible negative effects of the presence of sulfur compounds during the preparation the microemulsion was made using the sulfur-free nonionic polyoxyethylene 4 lauryl ether surfactant. Transmission electron microscopy showed that the as-prepared mixtures contained crystalline platinum particles of fairly homogeneous size (20 to 40 nm) with adsorbed amorphous palladium particles 2 to 5 nm in size. Catalyst samples were prepared by depositing the nanoparticles on a gamma-Al(2)O(3) support followed by heating in air at 600 degrees C. Alloyed particles of platinum and palladium with sizes ranging from 5 to 80 nm were obtained during the heating. The majority of the particles had the fcc structure and their compositional range was dependent upon the Pt:Pd molar ratio of the microemulsion. A catalyst prepared from a microemulsion with a 20:80 Pt:Pd molar ratio showed the highest catalytic activity for CO oxidation, while pure platinum and palladium catalysts showed higher sulfur resistance. These results differ from the performance of conventional wet-impregnated catalysts, where a 50:50 Pt:Pd molar ratio resulted in the highest catalytic activity as well as the highest sulfur resistance.  相似文献   

19.
The microstructure of 2% Pt/CeO2-TiO2 catalysts has an effect on their catalytic properties in CO oxidation. The nanostructured catalysts as platinum clusters 0.3–0.5 nm in size are the most active. These clusters are stabilized at crystal boundaries formed by irregularly intergrown anatase particles. The catalyst containing platinum particles 2–5 nm in size is less active because of the decrease in the extent of dispersion of platinum and the change of its electron state.  相似文献   

20.
No doubt partially because of their catalytic activity, small platinum particles on mineral supports have been extensively studied by NMR during recent years. Here we will discuss these data in relation to the expected electronic properties of small metal particles. Experimentally, no quantum size effects are found, but the local densities of state at the Fermi energy show considerable site-dependence when going from the surface to the interior of the particle. Such effects have been theoretically predicted for an infinite film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号